Skip to main content
Log in

The Kinetics and Mechanism of the Selective Oxidation of 20Fe–40Ni–10Mn–30Cr Alloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Process environments of high carbon activity (a c  > 1) and low oxygen partial pressures (p O2) are often encountered in the petrochemical industry. Under these conditions a type of corrosion known as metal dusting occurs. Previous work has identified a 20Fe–40Ni–10Mn–30Cr high temperature alloy as a potential metal dusting resistant material. Knowledge of the kinetics and mechanism of the oxidation of the alloy under low p O2 conditions would provide a better understanding of its corrosion resistant behavior and guide future alloy development. The present work examines the selective oxidation of Mn and Cr in the 20Fe–40Ni–10Mn–30Cr alloy under low p O2 conditions. The conditions for oxidation were selected by fixing the p O2 value such that only Mn and Cr would oxidize. These p O2 values are representative of the conditions that exist in metal dusting type environments. A comparison of the oxide film chemistry and morphology with those formed under metal dusting conditions will inform whether the high carbon activity is playing a role in protective oxide film formation. Low p O2 values are obtained by using a 90:10 CO:CO2 mixture at 1,000 K. Under these conditions an oxide film rapidly forms on the surface of the alloy. Analysis of the oxidized alloy by electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy reveals that the oxide consists of a continuous spinel with the approximate stoichiometry of MnCr2O4, as well as islands of MnO and fibrillar structures of MnCr2O4 stoichiometry. The parabolic rate constant for the growth of the spinel is determined from thermogravimetric analysis [k p  = (3.72 ± 0.01) × 10−14 g2 cm−4 s−1], TEM analysis [k p  = (6 ± 3) × 10−14 g2 cm−4 s−1] and cross-sectional SEM [k p  = (3 ± 1) × 10−14 g2 cm−4 s−1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Alvarez, D. Melo, O. Salas, J. Oseguera and V. Lopez, Surface and Coatings Technology 203, (5–7), 2008 (422–426).

    Article  Google Scholar 

  2. T. A. Ramanarayanan and C. M. Chun, ECS Transactions 41, 47 (2012).

  3. H. J. Grabke, Materials and Corrosion 49, (5), 1998 (303–308).

    Article  Google Scholar 

  4. D. J. Young and J. Zhang, ECS Transactions 16, 3 (2009).

  5. D. J. Young, J. Zhang, C. Geers and M. Schuetze, Mater. Corros. 62, (1), 2011 (7–28).

    Article  Google Scholar 

  6. R. F. Hochman, Proceedings of Electrochemical Society 77-1, 715 (1976).

  7. R. F. Hochman, Proceedings of the 4th International Congress on Metal Corrosion, 258 (1972).

  8. R. A. Perkins, W. C. Coons and F. J. Radd, Proceedings of Electrochemical Society 77-1, 733 (1976).

  9. C. M. Chun and T. A. Ramanarayanan, Journal of the Electrochemical Society 154, (9), 2007 (C465–C471).

    Article  Google Scholar 

  10. H. J. Grabke, Materials and Corrosion 54, (10), 2003 (736–746).

    Article  Google Scholar 

  11. T. A. Ramanarayanan and C. M. Chun, Developments in High-Temperature Corrosion and Protection of Materials (Woodhead Pub. Ltd., Cambridge, 2008), p. 80.

  12. C. M. Chun, J. D. Mumford and T. A. Ramanarayanan, Journal of the Electrochemical Society 149, (7), 2002 (B348–B355).

    Article  Google Scholar 

  13. Z. Zeng, K. Natesan and V. A. Maroni, Oxidation of Metals 58, (1–2), 2002 (147–170).

    Article  Google Scholar 

  14. C. M. Chun, G. Bhargava and T. A. Ramanarayanan, ECS Transactions 3, 43 (2007).

  15. T. A. Ramanarayanan and C. Chun, Application: US Patent No. 2002-99362, 20030175544, 20020315 (2003).

  16. T. B. Reed, Free Energy of Formation of Binary Compounds. An Atlas of Charts for High-Temperature Chemical Calculations (MIT Press, 1971).

  17. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry (Pergamon Press, Oxford ,1979), pp. 462.

  18. W. Soller, Physical Review 24, 1924 (158–167).

    Article  Google Scholar 

  19. N. Fairley and C. S. Ltd, CasaXPS Manual 2.3.15: CasaXPX Processing Software for XPS Spectra (Casa Software Limited, 2009).

  20. H. Li and W. Chen, Oxidation of Metals 77, (3–4), 2012 (107–127).

    Article  Google Scholar 

  21. C.-C. Hsieh and W. Wu, ISRN Metallurgy 2012, 2012 (16).

    Article  Google Scholar 

  22. B. J. Tan, K. J. Klabunde and P. M. A. Sherwood, Journal of the American Chemical Society 113, (3), 1991 (855–861).

    Article  Google Scholar 

  23. G. C. Allen, S. J. Harris, J. A. Jutson and J. M. Dyke, Applied Surface Science 37, (1), 1989 (111–134).

    Article  Google Scholar 

  24. G. Ertl and J. Kueppers, Monographs in Modern Chemistry, Vol. 4: Low Energy Electrons and Surface Chemistry (1974).

  25. J. Gilewicz-Wolter, J. Dudała, Z. Żurek, M. Homa, J. Lis and M. Wolter, Journal of Phase Equilibria and Diffusion 26, (5), 2005 (561–564).

    Article  Google Scholar 

  26. J. Gilewicz-Wolter, Z. Zurek, J. Dudala, J. Lis, M. Homa and M. Wolter, Advances in Science and Technology 46, 27 (2006).

  27. M. Keller and R. Dieckmann, Berichte der Bunsengesellschaft für physikalische Chemie 89, (8), 1985 (883–893).

    Article  Google Scholar 

  28. M. O’Keeffe and M. Valigi, Journal of Physics and Chemistry of Solids 31, (5), 1970 (947–962).

    Article  Google Scholar 

  29. G. M. Raynaud and R. A. Rapp, Oxidation of Metals 21, (1–2), 1984 (89–102).

    Article  Google Scholar 

  30. T. A. Ramanarayanan, J. D. Mumford, C. M. Chun and R. A. Petkovic, Solid State Ionics 136–137, 2000 (83–90).

    Article  Google Scholar 

  31. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972).

Download references

Acknowledgments

This work was partially supported by NSF Division of Chemistry CHE-1213216. We also acknowledge the support provided by ExxonMobil Research and Engineering, as well as Jerry Poirier and the Princeton University Imaging Analysis Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Bernasek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frith, M.G., Wnuk, J.D., Chun, C. et al. The Kinetics and Mechanism of the Selective Oxidation of 20Fe–40Ni–10Mn–30Cr Alloy. Oxid Met 83, 71–88 (2015). https://doi.org/10.1007/s11085-014-9505-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9505-4

Keywords

Navigation