Skip to main content
Log in

Efficient design of all-optical AND and OR logic gates using fluid infiltration in silicon-based photonic crystal platform

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a novel approach for designing all-optical logic gates in a photonic crystal platform, utilizing an appropriate fluid infiltration technique. Considering a threshold of 26% input power for a logic zero, the proposed method can create four all-optical AND logic gates and three all-optical OR logic gates that can successfully perform the expected logical functions for an input light source with a central wavelength of 1.55 µm. The results of numerical simulations indicate that the minimum delay observed in AND gates is only 393 fs, while the minimum delay among OR gates is 1700 fs. The maximum delay observed in AND gates is 693 fs, and the maximum delay among OR gates is 3933 fs. These findings demonstrate that various logical functions can be achieved with minimal delays by injecting an appropriate fluid into the air holes of a fixed platform. The proposed method provides a promising development in producing more efficient and reliable Photonic Field-Programmable Gate Arrays (PhFPGAs), potentially replacing existing integrated circuit manufacturing methods. The simplicity and flexibility of the fluid injection method and the feasibility of fabricating such a platform with current technologies make this approach a significant advancement in developing PhFPGAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and material

The data supporting this study's findings are available from the corresponding author upon reasonable request.

References

  • Aliee, M., Mozaffari, M.H., Saghaei, H.: Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation. Photonics Nanostruct. 40, 100797 (2020). https://doi.org/10.1016/j.photonics.2020.100797

    Article  Google Scholar 

  • Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Effect of scattering rods in the frequency response of photonic crystal demultiplexers. J. Optoelectron. Adv. Mater. 17, 259–263 (2015a)

    MATH  Google Scholar 

  • Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2* 4 all optical decoder switch based on photonic crystal ring resonators. J Mod Opt. 62, 430–434 (2015b)

    ADS  MathSciNet  MATH  Google Scholar 

  • Areed, N.F.F., El Fakharany, A., Hameed, M.F.O., Obayya, S.S.A.: Controlled optical photonic crystal AND gate using nematic liquid crystal layers. Opt. Quantum Electron. 49, 1–12 (2017a)

    Google Scholar 

  • Areed, N.F.F., el Fakharany, A., Hameed, M.F.O., Obayya, S.S.A.: Controlled optical photonic crystal AND gate using nematic liquid crystal layers. Opt. Quantum Electron. (2017b). https://doi.org/10.1007/s11082-016-0852-z

    Article  Google Scholar 

  • Asaduzzaman, S., Ahmed, K., Bhuiyan, T., Farah, T.: Hybrid photonic crystal fiber in chemical sensing. Springerplus 5, 1–11 (2016)

    Google Scholar 

  • Bedoya, A.C., Domachuk, P., Grillet, C., Monat, C., Mägi, E.C., Li, Eggleton, B.J.: Photonic crystal waveguide created by selective infiltration, In: Photonic Crystal Materials and Devices X, SPIE, 2012: pp. 179–184.

  • Beggs, D.M., White, T.P., Cairns, L., O’Faolain, L., Krauss, T.F.: Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler. Phys. E Low Dimens. Syst. Nanostruct. 41, 1111–1114 (2009). https://doi.org/10.1016/j.physe.2008.08.034

    Article  ADS  Google Scholar 

  • Busch, K., Lölkes, S., Wehrspohn, R.B., Föll, H.: Photonic crystals: advances in design, fabrication, and characterization, Wiley (2006)

  • Cai, Z., Li, Z., Ravaine, S., He, M., Song, Y., Yin, Y., Zheng, H., Teng, J., Zhang, A.: From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev. 50, 5898–5951 (2021)

    Google Scholar 

  • Cárdenas-Sevilla, G.A., Finazzi, V., Villatoro, J., Pruneri, V.: Photonic crystal fiber sensor array based on modes overlapping. Opt Express. 19, 7596–7602 (2011)

    ADS  Google Scholar 

  • Chen, Z., Li, Z., Li, B.: A 2-to-4 decoder switch in SiGe/Si multimode inteference. Opt Express. 14, 2671 (2006). https://doi.org/10.1364/oe.14.002671

    Article  ADS  Google Scholar 

  • Chen, W., Meng, Z., Xue, M., Shea, K.J.: Molecular imprinted photonic crystal for sensing of biomolecules. Mol. Imprint. 4, 1–12 (2016)

    Google Scholar 

  • Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Nanoimprint lithography. J. Vacuum Sci. Technol. b: Microelectron. Nanometer Struct. Process. Measure. Phenomena. 14, 4129–4133 (1996)

    ADS  Google Scholar 

  • Danaie, M., Kaatuzian, H.: Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect. Opt. Quantum Electron. 44, 27–34 (2012a)

    Google Scholar 

  • Danaie, M., Kaatuzian, H.: Design and simulation of an all-optical photonic crystal and gate using nonlinear Kerr effect. Opt. Quantum Electron. (2012b). https://doi.org/10.1007/s11082-011-9527-y

    Article  Google Scholar 

  • Dangi, M.M., Aghdam, A.M., Karimzadeh, R., Saghaei, H.: Design and simulation of high-quality factor all-optical demultiplexers based on a two-dimensional photonic crystal. Opt. Continuum 1, 1458–1473 (2022)

    Google Scholar 

  • Daveau, R.S., Balram, K.C., Pregnolato, T., Liu, J., Lee, E.H., Song, J.D., Verma, V., Mirin, R., Nam, S.W., Midolo, L.: Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica. 4, 178–184 (2017)

    ADS  Google Scholar 

  • Deetlefs, M., Shara, M., Seddon, K.R.: Refractive indices of ionic liquids, Ionic Liquids IIIa: Fundamentals, Progress, Challenges, and Opportunities, pp. 219–233. Properties and Structure. American Chemical Society, Washington (2005)

    Google Scholar 

  • Ebnali-Heidari, M., Dehghan, F., Saghaei, H., Koohi-Kamali, F., Moravvej-Farshi, M.K.: Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. J. Mod. Opt. 59, 1384–1390 (2012). https://doi.org/10.1080/09500340.2012.715690

    Article  ADS  Google Scholar 

  • Englund, D., Fattal, D., Waks, E., Solomon, G., Zhang, B., Nakaoka, T., Arakawa, Y., Yamamoto, Y., Vučković, J.: Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005)

    ADS  Google Scholar 

  • Foroughifar, A., Saghaei, H., Veisi, E.: Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt Quantum Electron. 53, 101 (2021a). https://doi.org/10.1007/s11082-021-02735-z

    Article  Google Scholar 

  • Foroughifar, A., Saghaei, H., Veisi, E.: Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt. Quantum Electron. (2021b). https://doi.org/10.1007/s11082-021-02743-z

    Article  Google Scholar 

  • Fu, Y., Hu, X., Gong, Q.: Silicon photonic crystal all-optical logic gates. Phys. Lett. 377, 329–333 (2013). https://doi.org/10.1016/j.physleta.2012.11.034

    Article  Google Scholar 

  • Ghanbari, A., Kashaninia, A., Sadr, A., Saghaei, H.: Supercontinuum generation with femtosecond optical pulse compression in silicon photonic crystal fibers at 2500 nm. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-018-1651-5

    Article  Google Scholar 

  • Goswami, K., Mondal, H., Sen, M.: A review on all-optical logic adder: heading towards next-generation processor. Opt. Commun. 483, 126668 (2021)

    Google Scholar 

  • Goswami, K., Mondal, H., Sen, M.: Optimized design of multiple bends for maximum power transfer in optical waveguide. Optik (stuttg). 265, 169448 (2022)

    ADS  Google Scholar 

  • Goswami, K., Mondal, H., Sen, M.: Design and analysis of passive and phase insensitive all-optical isolator in linear optical platform. Opt. Commun. 529, 129071 (2023). https://doi.org/10.1016/j.optcom.2022.129071

    Article  Google Scholar 

  • Guo, L.J.: Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)

    Google Scholar 

  • Guo, Y., Ye, J.Y., Divin, C., Huang, B., Thomas, T.P., Baker, J., Norris, T.B.: Real-time biomolecular binding detection using a sensitive photonic crystal biosensor. Anal Chem. 82, 5211–5218 (2010)

    Google Scholar 

  • Guo, Y., Zhang, S., Li, J., Li, S., Cheng, T.: A sensor-compatible polarization filter based on photonic crystal fiber with dual-open-ring channel by surface plasmon resonance. Optik (stuttg). 193, 162868 (2019). https://doi.org/10.1016/j.ijleo.2019.05.074

    Article  ADS  Google Scholar 

  • Haddadan, F., Soroosh, M., Alaei-Sheini, N.: Designing an electro-optical encoder based on photonic crystals using the graphene–Al2O3 stacks. Appl. Opt. 59, 2179–2185 (2020)

    ADS  Google Scholar 

  • Hosseinzadeh Sani, M., Ghanbari, A., Saghaei, H.: An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt Quantum Electron. 52, 295 (2020). https://doi.org/10.1007/s11082-020-02418-1

    Article  Google Scholar 

  • Hosseinzadeh Sani, M., Saghaei, H., Mehranpour, M.A., Asgariyan Tabrizi, A.: A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers. Photon. Sens. 11, 457–471 (2021). https://doi.org/10.1007/s13320-020-0607-0

    Article  ADS  Google Scholar 

  • Huber, M.L.: Thermal conductivity, and surface tension of selected pure fluids as implemented in REFPROP v10. 0, (2018)

  • Ibrahim, T.A., Grover, R., Kuo, L.C., Kanakaraju, S., Calhoun, L.C., Ho, P.T.: All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photonics Technol. Lett. 15, 1422–1424 (2003). https://doi.org/10.1109/LPT.2003.818049

    Article  ADS  Google Scholar 

  • Jalali Azizpour, M.R., Soroosh, M., Dalvand, N., Seifi-Kavian, Y.: All-optical ultra-fast graphene-photonic crystal switch. Crystals (basel) 9, 461 (2019)

    Google Scholar 

  • Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997a)

    ADS  Google Scholar 

  • Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals. Solid State Commun. 102, 165–173 (1997b)

    ADS  Google Scholar 

  • John, S., Wang, J.: Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett. 64, 2418 (1990)

    ADS  Google Scholar 

  • Johnson, S.G., Joannopoulos, J.D.: Photonic crystals: the road from theory to practice, Springer Science & Business Media, (2001)

  • Kalantari, M., Karimkhani, A., Saghaei, H.: Ultra-Wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique. Optik (stuttg). 158, 142–151 (2018). https://doi.org/10.1016/j.ijleo.2017.12.014

    Article  ADS  Google Scholar 

  • Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. Lightwave Technol. 19, 1970–1975 (2001). https://doi.org/10.1109/50.971693

    Article  ADS  Google Scholar 

  • Kumar, R., Huybrechts, K., Liu, L., Spuessens, T., Roelkens, G., Geluk, E.J., de Vries, T., Regreny, P., van Thourhout, D., Baets, R., Morthier, G.: An ultra-small, low-power all-optical flip-flop memory on a silicon chip. Opt. Infobase Conf. Papers. 4, 182–187 (2010). https://doi.org/10.1038/nphoton.2009.268

    Article  Google Scholar 

  • Liu, Y., Salemink, H.W.M.: Photonic crystal-based all-optical on-chip sensor. Opt Express. 20, 19912–19920 (2012)

    ADS  Google Scholar 

  • Lončar, M., Scherer, A., Qiu, Y.: Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648–4650 (2003)

    ADS  Google Scholar 

  • Lu, C., Lipson, R.H.: Interference lithography: a powerful tool for fabricating periodic structures. Laser Photon Rev. 4, 568–580 (2010)

    ADS  Google Scholar 

  • Maleki, M.J., Mir, A., Soroosh, M.: Designing an ultra-fast all-optical full-adder based on nonlinear photonic crystal cavities. Opt. Quantum Electron. 52, 196 (2020). https://doi.org/10.1007/s11082-020-02311-x

    Article  Google Scholar 

  • Massaro, A.: Photonic crystals: Introduction, applications and theory, BoD–Books on Demand, (2012)

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29–35 (2017). https://doi.org/10.1049/iet-opt.2016.0022

    Article  Google Scholar 

  • Mohebzadeh-Bahabady, A., Olyaee, S.: Designing low power and high contrast ratio all-optical NOT logic gate for using in optical integrated circuits. Opt Quantum Electron. 51, 3 (2019)

    Google Scholar 

  • Mokhtarbaf, A., Mosleh, M., Saghaei, H., Chekin, M.: Design and simulation of all-optical majority gates using fluid infiltration approach in photonic crystal slab. Opt. Quantum Electron. 55, 265 (2023). https://doi.org/10.1007/s11082-022-04465-2

    Article  Google Scholar 

  • Mondal, H., Sen, M., Prakash, C., Goswami, K., Sarma, C.K.: Impedance matching theory to design an all-optical AND gate. IET Optoelectron. 12, 244–248 (2018)

    Google Scholar 

  • Mondal, H., Sen, M., Goswami, K.: Design and analysis of a 0.9 Tb/s six-channel WDM filter based on photonic crystal waveguides. JOSA b. 36, 3181–3188 (2019a)

    ADS  Google Scholar 

  • Mondal, H., Sen, M., Goswami, K.: Design and analysis of all-optical 1-to-2 line decoder based on linear photonic crystal. IET Optoelectron. 13, 191–195 (2019b)

    Google Scholar 

  • Mondal, H., Goswami, K., Sen, M., Khan, W.R.: Design and analysis of all-optical logic NOR gate based on linear optics. Opt. Quantum Electron. 54, 1–14 (2022)

    Google Scholar 

  • Monisha, S., Saranya, D., Rajesh, A.: Design and analysis of multi-hexagonal reversible encoder using photonic crystals. Opt. Quantum Electron. 51, 6 (2018). https://doi.org/10.1007/s11082-018-1718-3

    Article  Google Scholar 

  • Muthu, K.E., Selvendran, S., Keerthana, V., Murugalakshmi, K., Raja, A.S.: Design and analysis of a reconfigurable XOR/OR logic gate using 2D photonic crystals with low latency. Opt. Quantum Electron. 52, 433 (2020a)

    Google Scholar 

  • Muthu, K.E., Selvendran, S., Keerthana, V., Murugalakshmi, K., Raja, A.S.: Design and analysis of a reconfigurable XOR/OR logic gate using 2D photonic crystals with low latency. Opt Quantum Electron (2020b). https://doi.org/10.1007/s11082-020-02550-y

    Article  Google Scholar 

  • Naghizade, S., Saghaei, H.: A novel design of all-optical 4 to 2 encoder with multiple defects in silica-based photonic crystal fiber. Optik (stuttg). 222, 165419 (2020a). https://doi.org/10.1016/j.ijleo.2020.165419

    Article  ADS  Google Scholar 

  • Naghizade, S., Saghaei, H.: Tunable graphene-on-insulator band-stop filter at the mid-infrared region. Opt. Quantum Electron. 52, 224 (2020b). https://doi.org/10.1007/s11082-020-02350-4

    Article  Google Scholar 

  • Naghizade, S., Saghaei, H.: A novel design of fast and compact all-optical full-adder using nonlinear resonant cavities. Opt Quantum Electron. 53, 262 (2021a). https://doi.org/10.1007/s11082-021-02929-5

    Article  Google Scholar 

  • Naghizade, S., Saghaei, H.: A novel design of all-optical full-adder using nonlinear X-shaped photonic crystal resonators. Opt. Quantum Electron. 53, 1–13 (2021b)

    Google Scholar 

  • Naghizade, S., Saghaei, H.: Tunable electro-optic analog-to-digital converter using graphene nanoshells in photonic crystal ring resonators. J. Opt. Soc. Am. b. 38, 2127–2134 (2021c). https://doi.org/10.1364/JOSAB.423088

    Article  ADS  Google Scholar 

  • Naghizade, S., Saghaei, H.: An ultra-fast optical analog-to-digital converter using nonlinear X-shaped photonic crystal ring resonators. Opt. Quantum Electron. 53, 1–16 (2021d). https://doi.org/10.1007/s11082-021-02798-y

    Article  Google Scholar 

  • Naghizade, S., Saghaei, H.: Ultra-fast tunable optoelectronic full-adder based on photonic crystal ring resonators covered by graphene nanoshells. Phys. E Low Dimens. Syst. Nanostruct. 142, 115293 (2022). https://doi.org/10.1016/j.physe.2022.115293

    Article  Google Scholar 

  • Naghizade, S., Didari-Bader, A., Saghaei, H.: Ultra-fast tunable optoelectronic 2-to-4 binary decoder using graphene-coated silica rods in photonic crystal ring resonators. Opt. Quantum Electron. 54, 767 (2022). https://doi.org/10.1007/s11082-022-04157-x

    Article  Google Scholar 

  • Naghizade, S., Didari-Bader, A., Saghaei, H., Etezad, M.: Ultra-fast all-optical 8-to-3 encoder utilizing photonic crystal fiber. AIP Adv. 13, 045303 (2023a). https://doi.org/10.1063/5.0142525

    Article  ADS  Google Scholar 

  • Naghizade, S., Didari-Bader, A., Saghaei, H., Etezad, M.: An electro-optic comparator based on photonic crystal ring resonators covered by graphene nanoshells. Optik (stuttg). 283, 170898 (2023b)

    ADS  Google Scholar 

  • Nair, R.V., Vijaya, R.: Photonic crystal sensors: an overview. Prog Quantum Electron. 34, 89–134 (2010). https://doi.org/10.1016/j.pquantelec.2010.01.001

    Article  ADS  Google Scholar 

  • Nayyeri Raad, A., Saghaei, H., Mehrabani, Y.S.: An optical 2-to-4 decoder based on photonic crystal X-shaped resonators covered by graphene shells. Opt Quantum Electron. 55, 452 (2023). https://doi.org/10.1007/s11082-023-04727-7

    Article  Google Scholar 

  • Olyaee, S., Mohsenirad, H., Mohebzadeh-Bahabady, A.: Photonic crystal chemical/biochemical sensors, In: H. Mohsenirad (Ed.), Progresses in Chemical Sensor, IntechOpen, Rijeka, 2016: p. Ch. 3. https://doi.org/10.5772/63288.

  • Pacholski, C.: Photonic crystal sensors based on porous silicon. Sensors. 13, 4694–4713 (2013)

    ADS  Google Scholar 

  • Parandin, F., Malmir, M.-R., Naseri, M.: All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals. Superlattices Microstruct. 109, 437–441 (2017). https://doi.org/10.1016/j.spmi.2017.05.030

    Article  ADS  Google Scholar 

  • Parandin, F., Karkhanehchi, M.M., Naseri, M., Zahedi, A.: Design of a high bitrate optical decoder based on photonic crystals. J Comput Electron. 17, 830–836 (2018). https://doi.org/10.1007/s10825-018-1147-3

    Article  Google Scholar 

  • Parandin, F., Heidari, F., Rahimi, Z., Olyaee, S.: Two-dimensional photonic crystal biosensors: a review. Opt. Laser Technol. 144, 107397 (2021a)

    Google Scholar 

  • Parandin, F., Kamarian, R., Jomour, M.: A novel design of all optical half-subtractor using a square lattice photonic crystals. Opt. Quantum Electron. 53, 114 (2021b). https://doi.org/10.1007/s11082-021-02772-8

    Article  Google Scholar 

  • Parandin, F., Olyaee, S., Kamarian, R., Jomour, M.: Design and simulation of linear all-optical comparator based on square-lattice photonic crystals, In: Photonics, MDPI, 2022: p. 459.

  • Prakash, C., Sen, M., Mondal, H., Goswami, K.: Design and optimization of a TE-pass polarization filter based on a slotted photonic crystal waveguide. JOSA b. 35, 1791–1798 (2018)

    ADS  Google Scholar 

  • Prather, D.W., Shi, S., Sharkawy, A., Murakowski, J., Schneider, G.J., Photonic crystals, Theory, Applications and Fabrication. (2009)

  • Rabee, A.S.H., Hameed, M.F.O., Heikal, A.M., Obayya, S.S.A.: Highly sensitive photonic crystal fiber gas sensor. Optik (stuttg). 188, 78–86 (2019)

    ADS  Google Scholar 

  • Raei, R., Ebnali-Heidari, M., Saghaei, H.: Supercontinuum generation in organic liquid–liquid core-cladding photonic crystal fiber in visible and near-infrared regions: publisher’s note. J. Opt. Soc. Am. b. 35, 1545 (2018). https://doi.org/10.1364/josab.35.001545

    Article  ADS  Google Scholar 

  • Rajasekar, R., Parameshwari, K., Robinson, S.: Nano-optical switch based on photonic crystal ring resonator. Plasmonics 14, 1687–1697 (2019)

    Google Scholar 

  • Rani, P., Kalra, Y., Sinha, R.K.: Realization of AND gate in Y shaped photonic crystal waveguide. Opt. Commun. 298, 227–231 (2013a)

    ADS  Google Scholar 

  • Rani, P., Kalra, Y., Sinha, R.K.: Realization of and gate in y shaped photonic crystal waveguide. Opt. Commun. (2013b). https://doi.org/10.1016/j.optcom.2013.02.014

    Article  Google Scholar 

  • Rao, V.S.C.M., Hughes, S.: Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun. Phys. Rev. Lett. 99, 193901 (2007)

    ADS  Google Scholar 

  • Rao, D.G.S., Palacharla, V., Swarnakar, S., Kumar, S.: Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking. Appl. Opt. 59, 7139–7143 (2020)

    ADS  Google Scholar 

  • Saghaei, H.: Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation. Appl. Opt. 57, 5591 (2018). https://doi.org/10.1364/ao.57.005591

    Article  ADS  Google Scholar 

  • Saghaei, H., Van, V.: Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide. J. Opt. Soc. Am. b. 36, A193 (2019). https://doi.org/10.1364/josab.36.00a193

    Article  ADS  Google Scholar 

  • Saghaei, H., Elyasi, P., Karimzadeh, R.: Design, fabrication, and characterization of Mach-Zehnder interferometers. Photonics Nanostruct. (2019). https://doi.org/10.1016/j.photonics.2019.100733

    Article  Google Scholar 

  • Saghaei, H., Elyasi, P., Shastri, B.J.: Sinusoidal and rectangular Bragg grating filters: design, fabrication, and comparative analysis. J Appl Phys. 132, 064501 (2022)

    ADS  Google Scholar 

  • Saleh Naghizade, H., Saghaei: Ultra-fast tunable optoelectronic half adder/subtractor based on photonic crystal ring resonators covered by graphene nanoshells. Opt. Quantum Electron. 53, 380 (2021). https://doi.org/10.1007/s11082-021-03071-y

    Article  Google Scholar 

  • Sani, M.H., Tabrizi, A.A., Saghaei, H., Karimzadeh, R.: An ultrafast all-optical half adder using nonlinear ring resonators in photonic crystal microstructure. Opt. Quantum Electron. (2020). https://doi.org/10.1007/s11082-020-2233-x

    Article  Google Scholar 

  • Sani, M.H., Ghanbari, A., Saghaei, H.: High-sensitivity biosensor for simultaneous detection of cancer and diabetes using photonic crystal microstructure. Opt. Quantum Electron. 54, 2 (2021). https://doi.org/10.1007/s11082-021-03371-3

    Article  Google Scholar 

  • Sardar, M.R., Faisal, M., Ahmed, K.: Hybrid porous core photonic crystal fiber sensor for monitoring nitrous oxide gas. Sens. Biosens. Res. 30, 100389 (2020)

    Google Scholar 

  • Seraj, Z., Soroosh, M., Alaei-Sheini, N.: Ultra-compact ultra-fast 1-bit comparator based on a two-dimensional nonlinear photonic crystal structure. Appl. Opt. 59, 811–816 (2020)

    ADS  Google Scholar 

  • Sethi, P., Roy, S.: Ultrafast all-optical flip-flops, simultaneous comparator-decoder and reconfigurable logic unit with silicon microring resonator switches. IEEE J. Sel. Topics Quantum Electron. 20, 118–125 (2014). https://doi.org/10.1109/JSTQE.2013.2295179

    Article  ADS  Google Scholar 

  • Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231–238 (2016)

    ADS  Google Scholar 

  • Sharma, A., Goswami, K., Mondal, H., Datta, T., Sen, M.: A review on photonic crystal based all-optical logic decoder: linear and nonlinear perspectives. Opt. Quantum Electron. 54, 1–24 (2022)

    Google Scholar 

  • Shirdel, M., Mansouri-Birjandi, M.A.: Photonic crystal all-optical switch based on a nonlinear cavity. Optik (stuttg). 127, 3955–3958 (2016). https://doi.org/10.1016/j.ijleo.2016.01.114

    Article  ADS  Google Scholar 

  • Silin, R.A.: Photonic crystals. J. Commun. Technol. Electron. 53, 121–130 (2008). https://doi.org/10.1007/s11487-008-2001-7

    Article  ADS  Google Scholar 

  • Sultana, J., Islam, M.S., Ahmed, K., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57, 2426–2433 (2018)

    ADS  Google Scholar 

  • Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A., Kuramochi, E.: All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2089185

    Article  Google Scholar 

  • Tavakoli, F., Zarrabi, F.B., Saghaei, H.: Modeling and analysis of high-sensitivity refractive index sensors based on plasmonic absorbers with Fano response in the near-infrared spectral region. Appl. Opt. 58, 5404–5414 (2019)

    ADS  Google Scholar 

  • Tung, K.K., Wong, W.H., Pun, E.Y.B.: Polymeric optical waveguides using direct ultraviolet photolithography process. Appl. Phys. A 80, 621–626 (2005)

    ADS  Google Scholar 

  • Veisi, E., Seifouri, M., Olyaee, S.: A novel design of all-optical high speed and ultra-compact photonic crystal AND logic gate based on the Kerr effect. Appl. Phys. B 127, 70 (2021)

    ADS  Google Scholar 

  • Veisi, E., Seifouri, M., Olyaee, S.: Design and numerical analysis of multifunctional photonic crystal logic gates. Opt Laser Technol. 151, 108068 (2022)

    Google Scholar 

  • Yablonovitch, E.: Photonic crystals. J Mod Opt. 41, 173–194 (1994)

    ADS  Google Scholar 

  • Yang, Y.P., Lin, K.C., Yang, I.C., Lee, K.Y., Lin, Y.J., Lee, W.Y., Tsai, Y.T.: All-optical photonic crystal and gate with multiple operating wavelengths. Opt. Commun. (2013). https://doi.org/10.1016/j.optcom.2013.01.035

    Article  Google Scholar 

  • Yang, Y.-P., Lin, K.-C., Yang, I.-C., Lee, K.-Y., Lee, W.-Y., Tsai, Y.-T.: All-optical photonic-crystal encoder capable of operating at multiple wavelengths. Optik (stuttg). 142, 354–359 (2017). https://doi.org/10.1016/j.ijleo.2017.05.067

    Article  ADS  Google Scholar 

  • Yao, P., Manga Rao, V.S.C., Hughes, S.: On-chip single photon sources using planar photonic crystals and single quantum dots. Laser Photon. Rev. 4, 499–516 (2010)

    ADS  Google Scholar 

  • Younis, R.M., Areed, N.F.F., Obayya, S.S.A.: Fully integrated and and or optical logic gates. IEEE Photonics Technol. Lett. 26, 1900–1903 (2014a). https://doi.org/10.1109/LPT.2014.2340435

    Article  ADS  Google Scholar 

  • Younis, R.M., Areed, N.F.F., Obayya, S.S.A.: Fully integrated and and or optical logic gates. IEEE Photon. Technol. Lett. (2014b). https://doi.org/10.1109/LPT.2014.2340435

    Article  Google Scholar 

  • Zamanian-Dehkordi, S.S., Soroosh, M., Akbarizadeh, G.: An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures. Opt. Rev. 25, 523–531 (2018)

    Google Scholar 

  • Zhang, J., Sun, Z., Yang, B.: Self-assembly of photonic crystals from polymer colloids. Curr. Opin. Colloid Interface Sci. 14, 103–114 (2009)

    ADS  Google Scholar 

  • Zhu, Z.-H., Ye, W.-M., Ji, J.-R., Yuan, X.-D., Zen, C.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt Express. 14, 1783–1788 (2006a)

    ADS  Google Scholar 

  • Zhu, Z.-H., Ye, W.-M., Ji, J.-R., Yuan, X.-D., Zen, C.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt Express (2006b). https://doi.org/10.1364/oe.14.001783

    Article  Google Scholar 

Download references

Funding

This study received no funding from public, commercial, or not-for-profit organizations or agencies.

Author information

Authors and Affiliations

Authors

Contributions

AM: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing. HS: Project administration, Resources, Software, Supervision, Validation, Visualization, Writing, Review, Revise & Editing. MM: Supervision, Validation, Visualization. MC: Supervision.

Corresponding author

Correspondence to Hamed Saghaei.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The authors have completely observed the ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtarbaf, A., Saghaei, H., Mosleh, M. et al. Efficient design of all-optical AND and OR logic gates using fluid infiltration in silicon-based photonic crystal platform. Opt Quant Electron 55, 935 (2023). https://doi.org/10.1007/s11082-023-05222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05222-9

Keywords

Navigation