Skip to main content
Log in

Design and simulation of all-optical majority gates using fluid infiltration approach in photonic crystal slab

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

With the growth of technology and the need to integrate optical devices, photonic crystals (PhCs) will have great potential in designing and fabricating programmable photonic integrated circuits (PICs). This paper proposes two all-optical majority gates using the fluid infiltration approach in a PhC slab, which aims to design logic functions. Numerical results using the well-known plane wave expansion method show that the proposed fundamental PhC slab has three photonic band gaps (PBGs) in TE mode. The most important is in the wavelength range of 1.516 μm ≤ λ ≤ 1.743 μm, located in the attractive telecom C-band range. The results of light propagation inside the proposed gates using the finite-difference time-domain (FDTD) method reveal that both gates have a standard threshold of less than 0.28 for the logic zero and more than 0.35 for the logic one. The first and second proposed majority gates also have delays of 680 fs and 610 fs, respectively. One of the advantages of using the fluid infiltration approach is that there is no need to change the geometric dimensions of the structure for the desired application. That goal can be achieved only by replacing the fluid with another one. The proposed designs can be used as basic logic gates in the design of PICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Aliee, M., Mozaffari, M.H., Saghaei, H.: Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation. Photonics Nanostruct. 40, 100797 (2020). https://doi.org/10.1016/j.photonics.2020.100797

    Article  Google Scholar 

  • Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2* 4 all optical decoder switch based on photonic crystal ring resonators. J Mod Opt. 62, 430–434 (2015)(a)

  • Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Effect of scattering rods in the frequency response of photonic crystal demultiplexers. J. Optoelectron. Adv. Mater. 17, 259–263 (2015)(b)

  • Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F., Andalib, A.: Band gap properties of two-dimensional photonic crystal structures with rectangular lattice. Journal of Optical Communications. 36, 109–114 (2015)(c)

  • Bedoya, A.C., Domachuk, P., Grillet, C., Monat, C., Mägi, E.C., Li, E., Eggleton, B.J.: Reconfigurable photonic crystal waveguides created by selective liquid infiltration. Opt. Express. 20, 11046–11056 (2012)

    Article  ADS  Google Scholar 

  • Beggs, D.M., White, T.P., Cairns, L., O’Faolain, L., Krauss, T.F.: Demonstration of an integrated optical switch in a silicon photonic crystal directional coupler. Phys. E Low Dimens Syst Nanostruct. 41, 1111–1114 (2009). https://doi.org/10.1016/j.physe.2008.08.034

    Article  ADS  Google Scholar 

  • de Blanco, M., Devescovi, C., Giedke, G., Saenz, J.J., Vergniory, M.G., Bradlyn, B., Bercioux, D., García-Etxarri, A.: Tutorial: computing topological invariants in 2D photonic crystals. Adv. Quantum Technol. 3, 1900117 (2020)

    Article  Google Scholar 

  • Caballero, L.E.P., Vasco, J.P., Guimaraes, P.S.S., Neto, O.P.V.: All-optical majority and Feynman gates in photonic crystals. In: 2015 30th Symposium on Microelectronics Technology and Devices (SBMicro). pp. 1–4. IEEE (2015)

  • Chen, Z., Li, Z., Li, B.: A 2-to-4 decoder switch in SiGe/Si multimode inteference. Opt. Express. 14, 2671 (2006). https://doi.org/10.1364/oe.14.002671

    Article  ADS  Google Scholar 

  • Dangi, M.M., Aghdam, A.M., Karimzadeh, R., Saghaei, H.: Design and simulation of high-quality factor all-optical demultiplexers based on a two-dimensional photonic crystal. Opt. Continuum. 1, 1458–1473 (2022)

    Article  Google Scholar 

  • Deetlefs, M., Shara, M., Seddon, K.R.: Refractive Indices of Ionic Liquids. Ionic Liquids IIIa: Fundamentals, Progress, Challenges, and Opportunities, Properties and Structure, pp. 219–233. American Chemical Society, Washington (2005)

    Google Scholar 

  • Ebnali-Heidari, M., Dehghan, F., Saghaei, H., Koohi-Kamali, F., Moravvej-Farshi, M.K.: Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. J. Mod. Opt. 59, 1384–1390 (2012). https://doi.org/10.1080/09500340.2012.715690

    Article  ADS  Google Scholar 

  • Foroughifar, A., Saghaei, H., Veisi, E.: Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt. Quantum Electron. 53, 101 (2021)

    Article  Google Scholar 

  • Fu, Y., Hu, X., Gong, Q., General, A.: Atomic and Solid State Physics. 377, 329–333 (2013). https://doi.org/10.1016/j.physleta.2012.11.034

  • Haddadan, F., Soroosh, M., Alaei-Sheini, N.: Designing an electro-optical encoder based on photonic crystals using the graphene–Al 2 O 3 stacks. Appl. Opt. 59, 2179–2185 (2020)

    Article  ADS  Google Scholar 

  • Hosseinzadeh Sani, M., Ghanbari, A., Saghaei, H.: An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt. Quantum Electron. 52, 295 (2020). https://doi.org/10.1007/s11082-020-02418-1

    Article  Google Scholar 

  • Ibrahim, T.A., Grover, R., Kuo, L.C., Kanakaraju, S., Calhoun, L.C., Ho, P.T.: All-optical AND/NAND logic gates using semiconductor microresonators. IEEE Photonics Technology Letters. 15, 1422–1424 (2003). https://doi.org/10.1109/LPT.2003.818049

    Article  ADS  Google Scholar 

  • Jalali Azizpour, M.R., Soroosh, M., Dalvand, N., Seifi-Kavian, Y.: All-optical Ultra-Fast Graphene-Photonic Crystal switch. Cryst. (Basel). 9, 461 (2019)

    Google Scholar 

  • John, S., Wang, J.: Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. Phys. Rev. Lett. 64, 2418 (1990)

    Article  ADS  Google Scholar 

  • Johnson, S.G., Joannopoulos, J.D.: Photonic Crystals: The road from Theory to Practice. Springer Science & Business Media (2001)

  • Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. Lightwave Technol. 19, 1970–1975 (2001). https://doi.org/10.1109/50.971693

    Article  ADS  Google Scholar 

  • Kumar, R., Huybrechts, K., Liu, L., Spuessens, T., Roelkens, G., Geluk, E.J., de Vries, T., Regreny, P., van Thourhout, D., Baets, R., Morthier, G.: An ultra-small, low-power all-optical flip-flop memory on a silicon chip. Optics InfoBase Conference Papers. 4, 182–187 (2010). https://doi.org/10.1038/nphoton.2009.268

  • Maleki, M.J., Mir, A., Soroosh, M.: Designing an ultra-fast all-optical full-adder based on nonlinear photonic crystal cavities. Opt. Quantum Electron. 52, 196 (2020). https://doi.org/10.1007/s11082-020-02311-x

    Article  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29–35 (2017). https://doi.org/10.1049/iet-opt.2016.0022

    Article  Google Scholar 

  • Monisha, S., Saranya, D., Rajesh, A.: Design and analysis of multi-hexagonal reversible encoder using photonic crystals. Opt. Quantum Electron. 51, 6 (2018). https://doi.org/10.1007/s11082-018-1718-3

    Article  Google Scholar 

  • Naghizade, Saghaei, H.: Ultra-fast tunable optoelectronic half adder/subtractor based on photonic crystal ring resonators covered by graphene nanoshells. Opt Quantum Electron. 53, 380(a). (2021). https://doi.org/10.1007/s11082-021-03071-y

  • Naghizade, S., Didari-Bader, A., Saghaei, H.: Ultra-fast tunable optoelectronic 2-to-4 binary decoder using graphene-coated silica rods in photonic crystal ring resonators. Opt. Quantum Electron. 54, 767 (2022). https://doi.org/10.1007/s11082-022-04157-x

    Article  Google Scholar 

  • Naghizade, S., Saghaei, H.: A novel design of fast and compact all-optical full-adder using nonlinear resonant cavities. Opt Quantum Electron. 53, 262(b). (2021). https://doi.org/10.1007/s11082-021-02929-5

  • Naghizade, S., Saghaei, H.: A novel design of all-optical full-adder using nonlinear X-shaped photonic crystal resonators. Opt Quantum Electron. 53, 1–13 (2021)(c)

  • Naghizade, S., Saghaei, H.: Ultra-fast tunable optoelectronic full-adder based on photonic crystal ring resonators covered by graphene nanoshells. Phys. E Low Dimens Syst Nanostruct. 142, 115293 (2022). https://doi.org/10.1016/j.physe.2022.115293

    Article  Google Scholar 

  • Parandin, F., Karkhanehchi, M.M., Naseri, M., Zahedi, A.: Design of a high bitrate optical decoder based on photonic crystals. J. Comput. Electron. 17, 830–836 (2018). https://doi.org/10.1007/s10825-018-1147-3

    Article  Google Scholar 

  • Parandin, F., Moayed, M.: Designing and simulation of 3-input majority gate based on two-dimensional photonic crystals. Optik (Stuttg). 216, 164930 (2020). https://doi.org/10.1016/j.ijleo.2020.164930

    Article  ADS  Google Scholar 

  • Rajasekar, R., Parameshwari, K., Robinson, S.: Nano-optical switch based on photonic crystal ring resonator. Plasmonics. 14, 1687–1697 (2019)

    Article  Google Scholar 

  • Rao, D.G.S., Palacharla, V., Swarnakar, S., Kumar, S.: Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking. Appl. Opt. 59, 7139–7143 (2020)

    Article  ADS  Google Scholar 

  • Saghaei, H., Elyasi, P., Shastri, B.J.: Sinusoidal and rectangular Bragg grating filters: design, fabrication, and comparative analysis. J. Appl. Phys. 132, 064501 (2022)

    Article  ADS  Google Scholar 

  • Saghaei, H., Heidari, V., Ebnali-Heidari, M., Yazdani, M.R.: A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik (Stuttg). 127, 11938–11947 (2016). https://doi.org/10.1016/j.ijleo.2016.09.111

    Article  ADS  Google Scholar 

  • Sani, M.H., Tabrizi, A.A., Saghaei, H., Karimzadeh, R.: An ultrafast all-optical half adder using nonlinear ring resonators in photonic crystal microstructure. Opt. Quantum Electron. 52 (2020). https://doi.org/10.1007/s11082-020-2233-x

  • Seraj, Z., Soroosh, M., Alaei-Sheini, N.: Ultra-compact ultra-fast 1-bit comparator based on a two-dimensional nonlinear photonic crystal structure. Appl. Opt. 59, 811–816 (2020)

    Article  ADS  Google Scholar 

  • Sethi, P., Roy, S.: Ultrafast All-Optical Flip-Flops, simultaneous Comparator-Decoder and Reconfigurable Logic Unit with Silicon Microring Resonator Switches. IEEE J. Sel. Top. Quantum Electron. 20, 118–125 (2014). https://doi.org/10.1109/JSTQE.2013.2295179

    Article  ADS  Google Scholar 

  • Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231–238 (2016)

    Article  ADS  Google Scholar 

  • Shirdel, M., Mansouri-Birjandi, M.A.: Photonic crystal all-optical switch based on a nonlinear cavity. Optik (Stuttg). 127, 3955–3958 (2016). https://doi.org/10.1016/j.ijleo.2016.01.114

    Article  ADS  Google Scholar 

  • Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A., Kuramochi, E.: All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 1–3 (2005). https://doi.org/10.1063/1.2089185

    Article  Google Scholar 

  • Tsaoulidis, D., Dore, V., Angeli, P., Plechkova, N., Seddon, K.R.: Flow patterns and pressure drop of ionic liquid–water two-phase flows in microchannels. Int. J. Multiph. Flow. 54, 1–10 (2013)

    Article  Google Scholar 

  • Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987). https://doi.org/10.1103/PhysRevLett.58.2059

    Article  ADS  Google Scholar 

  • Yaghoobi, R., Javahernia, S.: An optical majority gate using photonic crystal based nonlinear resonant cavity. J. Opt. Commun. 42, 425–429 (2021)

    Article  Google Scholar 

  • Yang, Y.-P., Lin, K.-C., Yang, I.-C., Lee, K.-Y., Lee, W.-Y., Tsai, Y.-T.: All-optical photonic-crystal encoder capable of operating at multiple wavelengths. Optik (Stuttg). 142, 354–359 (2017). https://doi.org/10.1016/j.ijleo.2017.05.067

    Article  ADS  Google Scholar 

  • Younis, R.M., Areed, N.F.F., Obayya, S.S.A.: Fully integrated and and or optical logic gates. IEEE Photonics Technology Letters. 26, 1900–1903 (2014). https://doi.org/10.1109/LPT.2014.2340435

    Article  ADS  Google Scholar 

  • Zamanian-Dehkordi, S.S., Soroosh, M., Akbarizadeh, G.: An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures. Opt. Rev. 25, 523–531 (2018)

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Ali Mokhtarbaf: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing. Mohammad Mosleh: Supervision, Validation, Visualization. Hamed Saghaei: Project administration, Resources, Software, Supervision, Validation, Visualization, Writing, Review, Revise & Editing. Mohsen Chekin: Supervision.

Corresponding authors

Correspondence to Mohammad Mosleh or Hamed Saghaei.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare no conflicts of interest.

Ethics approval

The ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancy, have been completely observed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtarbaf, A., Mosleh, M., Saghaei, H. et al. Design and simulation of all-optical majority gates using fluid infiltration approach in photonic crystal slab. Opt Quant Electron 55, 265 (2023). https://doi.org/10.1007/s11082-022-04465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04465-2

Keywords

Navigation