Skip to main content
Log in

Ultra-fast tunable optoelectronic 2-to-4 binary decoder using graphene-coated silica rods in photonic crystal ring resonators

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Fast and compact optoelectronic devices are highly sought after for applications in high-speed signal processing in optical communication networks. One approach to realizing such devices is through all-optical digital logic circuits. One of the main building blocks of such circuits is a decoder. In this work, we present a novel design for a tunable optoelectronic 2-to-4 binary decoder. The presented structure is realized by utilizing three photonic crystal (PhC) ring resonators. Each PhC ring resonator is formed by silicon rods encircled by silica (SiO2) rods coated with graphene nanoshells (GNSs). By adjusting the chemical potential of GNS with a proper gate voltage, we can tune the desired PhC resonant mode. The fundamental PhC microstructure’s photonic band structure is analyzed by using the plane wave expansion method. Furthermore, the finite-difference time-domain technique is used to solve Maxwell's equations and analyze the light propagation within the structure. Our numerical results reveal that 0.8 ps and 0.3 ps are the maximum rise and fall times for the final structure, respectively and the total size of this device is 850 µm2. Due to the short rise and fall times and its size which are among very important features in high-speed systems, the proposed design could be utilized for high-speed signal processing systems in miniaturized optical communication network devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Optik (stuttg). 125, 5348–5351 (2014)

    Article  ADS  Google Scholar 

  • Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photon. Nanostruct. Fund. Appl. 24, 29–34 (2017)

  • Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon. Netw. Commun. 29, 146–150 (2015a)

  • Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F., Andalib, A.: Band gap properties of two-dimensional photonic crystal structures with rectangular lattice. J. Opt. Commu. 36, 109–114 (2015b)

  • Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B. 26, 1, 10-16 (2009). https://doi.org/10.1364/josab.26.000010

  • Askarian, A.: Design and analysis of all optical 2× 4 decoder based on kerr effect and beams interference procedure. Opt Quantum Electron. 53, 1–17 (2021)

  • Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012). https://doi.org/10.1021/nn300989g

    Article  Google Scholar 

  • Calizo, I., Bao, W., Miao, F., Lau, C.N., Balandin, A.A.: The effect of substrates on the Raman spectrum of graphene: Graphene- on-sapphire and graphene-on-glass. Appl Phys Lett. 91, 201904 (2007). https://doi.org/10.1063/1.2805024

    Article  ADS  Google Scholar 

  • Carr, C.W., Radousky, H.B., Rubenchik, A.M., Feit, M.D., Demos, S.G.: Localized dynamics during laser-induced damage in optical materials. Phys Rev Lett. 92, 87401 (2004). https://doi.org/10.1103/PhysRevLett.92.087401

    Article  ADS  Google Scholar 

  • Casiraghi, C., Hartschuh, A., Lidorikis, E., Qian, H., Harutyunyan, H., Gokus, T., Novoselov, K.S., Ferrari, A.C.: Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007). https://doi.org/10.1021/nl071168m

    Article  ADS  Google Scholar 

  • Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018). https://doi.org/10.1016/j.spmi.2017.11.017

    Article  ADS  Google Scholar 

  • Chhipa, M.K., Madhav, B.T.P., Robinson, S., Janyani, V., Suthar, B.: Realization of all-optical logic gates using a single design of 2D photonic band gap structure by square ring resonator. Opt. Eng. 60, 075104 (2021)

    Article  ADS  Google Scholar 

  • Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A low-power all optical decoder based on photonic crystal nonlinear ring resonators. Optik (stuttg). 174, 400–408 (2018). https://doi.org/10.1016/j.ijleo.2018.08.090

    Article  ADS  Google Scholar 

  • Danaie, M., Kaatuzian, H.: bandwidth improvement for a photonic crystal optical Y-splitter. J Opt Soc Korea. 15, 283–288 (2011)

    Article  Google Scholar 

  • Ebnali-Heidari, M., Dehghan, F., Saghaei, H., Koohi-Kamali, F., Moravvej-Farshi, M.K.: Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. J Mod Opt. 59, 1384–1390 (2012). https://doi.org/10.1080/09500340.2012.715690

    Article  ADS  Google Scholar 

  • Ebnali-Heidari, M., Saghaei, H., Koohi-Kamali, F., Naser Moghadasi, M., Moravvej-Farshi, M.K.: Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers. IEEE J. Select. Top. Quant. Electron. 20, 5, 582–589 (2014). https://doi.org/10.1109/JSTQE.2014.2307313

  • Fakouri-Farid, V., Andalib, A.: Design and simulation of an all optical photonic crystal-based comparator. Optik (stuttg). 172, 241–248 (2018). https://doi.org/10.1016/j.ijleo.2018.06.153

    Article  ADS  Google Scholar 

  • Farmani, A., Miri, M., Sheikhi, M.H.: Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Opt Commun. 391, 68–76 (2017a)

  • Farmani, A., Miri, M., Sheikhi, M.H.: Design of a high extinction ratio tunable graphene on white graphene polarizer. IEEE Photon. Technol. Lett. 30, 153–156 (2017b)

  • Farmani, A., Soroosh, M., Mozaffari, M.H., Daghooghi, T.: Optical nanosensors for cancer and virus detections. In: Nanosens Smart Cities, pp. 419–432. Elsevier (2020)

  • Foroughifar, A., Saghaei, H., Veisi, E.: Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt Quantum Electron. 53, 101 (2021)

    Article  Google Scholar 

  • Gedney, S.D.: Introduction to the Finite-Difference time-domain (FDTD) method for electromagnetics. Synth. Lectures Comput. Electromag. 27, 1–250 (2011). https://doi.org/10.2200/S00316ED1V01Y201012CEM027

    Article  ADS  MATH  Google Scholar 

  • Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt Quantum Electron. 45, 1027–1036 (2013). https://doi.org/10.1007/s11082-013-9713-1

    Article  Google Scholar 

  • Ghadrdan, M., Mansouri-Birjandi, M.A.: Low-threshold ultrafast all-optical switch implemented with metallic nanoshells in the photonic crystal ring resonator. Superlattices Microstruct. 111, 789–795 (2017)

    Article  ADS  Google Scholar 

  • Guo, Y., Zhang, S., Li, J., Li, S., Cheng, T.: A sensor-compatible polarization filter based on photonic crystal fiber with dual-open-ring channel by surface plasmon resonance. Optik (Stuttg) 193, 162868 (2019). https://doi.org/10.1016/j.ijleo.2019.05.074

  • Haddadan, F., Soroosh, M., Alaei-Sheini, N.: Designing an electro-optical encoder based on photonic crystals using the graphene–Al 2 O 3 stacks. Appl Opt. 59, 2179–2185 (2020)

    Article  ADS  Google Scholar 

  • Hosseinzadeh Sani, M., Ghanbari, A., Saghaei, H.: An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt Quantum Electron. 52, 295 (2020). https://doi.org/10.1007/s11082-020-02418-1

    Article  Google Scholar 

  • Hussein, H.M.E., Ali, T.A., Rafat, N.H.: New designs of a complete set of Photonic Crystals logic gates. Opt Commun. 411, 175–181 (2018). https://doi.org/10.1016/j.optcom.2017.11.043

    Article  ADS  Google Scholar 

  • Jalali Azizpour, M.R., Soroosh, M., Dalvand, N., Seifi-Kavian, Y.: All-optical ultra-fast graphene-photonic crystal switch. Crystals (Basel). 9, 461 (2019)

  • Jiang, Y.C., Liu, S. bin, Zhang, H.F., Kong, X.K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt Commun. 348, 90–94 (2015). Doi: https://doi.org/10.1016/j.optcom.2015.03.011

  • Jile, H.: Realization of an all-optical comparator using beam interference inside photonic crystal waveguides. Appl Opt. 59, 3714 (2020). https://doi.org/10.1364/ao.385744

    Article  ADS  Google Scholar 

  • Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R., Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol. 6, 630–634 (2011). https://doi.org/10.1038/nnano.2011.146

    Article  ADS  Google Scholar 

  • Liu, Q., Ouyang, Z.B.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Guangzi Xuebao/acta Photonica Sinica. 37, 46–50 (2008). https://doi.org/10.1364/oe.16.018992

    Article  Google Scholar 

  • Maleki, M.J., Mir, A., Soroosh, M.: Designing an ultra-fast all-optical full-adder based on nonlinear photonic crystal cavities. Opt Quantum Electron. 52, 1–11 (2020)

    Article  Google Scholar 

  • Maleki, M.J., Soroosh, M., Mir, A.: Improving the performance of 2-to-4 optical decoders based on photonic crystal structures. Crystals (Basel). 9, 635 (2019)

  • Mansouri-Birjandi, M.A., Tavousi, A., Ghadrdan, M.: Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators. Photonics Nanostruct. 21, 44–51 (2016). https://doi.org/10.1016/j.photonics.2016.06.002

    Article  ADS  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Optik (stuttg). 127, 8706–8709 (2016). https://doi.org/10.1016/j.ijleo.2016.06.086

    Article  ADS  Google Scholar 

  • Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29–35 (2017). https://doi.org/10.1049/iet-opt.2016.0022

    Article  Google Scholar 

  • Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J Mod Opt. 63, 735–741 (2016). https://doi.org/10.1080/09500340.2015.1094580

    Article  ADS  Google Scholar 

  • Moradi, R.: All optical half subtractor using photonic crystal based nonlinear ring resonators. Opt Quantum Electron. 51, 119 (2019). https://doi.org/10.1007/s11082-019-1831-y

    Article  Google Scholar 

  • Naghizade, S., Khoshsima, H.: Low input power an all optical 4×2 encoder based on triangular lattice shape photonic crystal. Journal of Optical Communications. 1, 1–8 (2018). https://doi.org/10.1515/joc-2018-0019

    Article  Google Scholar 

  • Naghizade, S., Saghaei, H.: Tunable graphene-on-insulator band-stop filter at the mid-infrared region. Opt Quantum Electron. 52, 224 (2020a). https://doi.org/10.1007/s11082-020-02350-4

  • Naghizade, S., Saghaei, H.: A novel design of all-optical 4 to 2 encoder with multiple defects in silica-based photonic crystal fiber. Optik (Stuttg). 222, 165419 (2020b). https://doi.org/10.1016/j.ijleo.2020.165419

  • Naghizade, S., Saghaei, H.: A novel design of all-optical full-adder using nonlinear X-shaped photonic crystal resonators. Opt Quantum Electron. 53, 154, 1–13 (2021). https://doi.org/10.1007/s11082-021-02805-2

    Article  Google Scholar 

  • Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science. 320, 1308 (2008)

  • Neisy, M., Soroosh, M., Ansari-Asl, K.: All optical half adder based on photonic crystal resonant cavities. Photon Netw. Commun. 35, 245–250 (2018)

    Article  Google Scholar 

  • Radhouene, M., Najjar, M., Chhipa, M.K., Robinson, S., Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik (stuttg). 172, 924–929 (2018). https://doi.org/10.1016/j.ijleo.2018.07.118

    Article  ADS  Google Scholar 

  • Rahmani, A., Mehdizadeh, F.: Application of nonlinear PhCRRs in realizing all optical half-adder. Opt Quantum Electron. 50, 30 (2018). https://doi.org/10.1007/s11082-017-1301-3

    Article  Google Scholar 

  • Rajasekar, R., Parameshwari, K., Robinson, S.: Nano-optical switch based on photonic crystal ring resonator. Plasmonics 14, 1687–1697 (2019)

    Article  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Realization of tunable optical filter by photonic crystal ring resonators. Optik (stuttg). 124, 5377–5380 (2013). https://doi.org/10.1016/j.ijleo.2013.03.114

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of four-channel wavelength demultiplexer based on photonic crystal circular ring resonators for optical communications. Journal of Optical Communications. 35, 9–15 (2014). https://doi.org/10.1515/joc-2013-0022

    Article  Google Scholar 

  • Roelkens, G., Brouckaert, J., Taillaert, D., Dumon, P., Bogaerts, W., van Thourhout, D., Baets, R., Nötzel, R., Smit, M.: Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits. Opt Express. 13, 10102 (2005). https://doi.org/10.1364/opex.13.010102

    Article  ADS  Google Scholar 

  • Rostamizadeh, A., Taghizadeh, M., Jamali, J., Andalib, A.: Application of photonic crystal based nonlinear ring resonators for realizing all optical 3-to-8 decoder. Journal of Optical Communications. 52, 1–10 (2020). https://doi.org/10.1515/joc-2020-0094

    Article  Google Scholar 

  • Saghaei, H., Zahedi, A., Karimzadeh, R., Parandin, F.: Line defects on photonic crystals for the design of all-optical power splitters and digital logic gates. Superlattices Microstruct. 110, 133–138 (2017). https://doi.org/10.1016/j.spmi.2017.08.052

    Article  ADS  Google Scholar 

  • Sani, M.H., Tabrizi, A.A., Saghaei, H., Karimzadeh, R.: An ultrafast all-optical half adder using nonlinear ring resonators in photonic crystal microstructure. Opt Quantum Electron. 52, 107 (2020). https://doi.org/10.1007/s11082-020-2233-x

  • Seraj, Z., Soroosh, M., Alaei-Sheini, N.: Ultra-compact ultra-fast 1-bit comparator based on a two-dimensional nonlinear photonic crystal structure. Appl Opt. 59, 811–816 (2020)

    Article  ADS  Google Scholar 

  • Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt Commun. 370, 231–238 (2016)

    Article  ADS  Google Scholar 

  • Shi, B., Cai, W., Zhang, X., Xiang, Y., Zhan, Y., Geng, J., Ren, M., Xu, J.: Tunable band-stop filters for graphene plasmons based on periodically modulated graphene. Sci Rep. 6, 1–7 (2016)

    Google Scholar 

  • Song, K.S., Williams, R.T.: Silicon Dioxide. In: Handbook of optical constants of solids. pp. 270–299. Elsevier (1993)

  • Sun, Z., Martinez, A., Wang, F.: Optical modulators with 2D layered materials. Nat Photonics. 10, 227–238 (2016). https://doi.org/10.1038/nphoton.2016.15

    Article  ADS  Google Scholar 

  • Tavousi, A., Mansouri-Birjandi, M.A., Ghadrdan, M., Ranjbar-Torkamani, M.: Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering. Photon Netw. Commun. 34, 131–139 (2017)

    Article  Google Scholar 

  • Tho, N.H., Thy, T.T.M., Dat, P.T., Minh, V.C., Sang, N.X.: Physical Adsorption and photocatalytic activity of titanium dioxide nanotube and graphene oxide composite. VNU Journal of Science: Natural Sciences and Technology. 34, (2018)

  • Vali-Nasab, A.M., Mir, A., Talebzadeh, R.: Design and simulation of an all optical full-adder based on photonic crystals. Opt Quantum Electron. 51, 241–248 (2019). https://doi.org/10.1007/s11082-019-1881-1

    Article  Google Scholar 

  • Wabnitz, S., Eggleton, B.J.: All-optical signal processing. Data Communication and Storage Applications. (2015)

  • Yablonovitch, E.: Photonic band-gap structures. Journal of the Optical Society of America B. 10, 283 (1993). Doi: https://doi.org/10.1364/josab.10.000283

  • Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., Zhu, W., Avouris, P., Xia, F.: Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol. 7, 330–334 (2012). https://doi.org/10.1038/nnano.2012.59

    Article  ADS  Google Scholar 

  • Younis, R.M., Areed, N.F.F., Obayya, S.S.A.: Fully integrated and and or optical logic gates. IEEE Photonics Technol. Lett. 26, 1900–1903 (2014). https://doi.org/10.1109/LPT.2014.2340435

    Article  ADS  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SN: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Software. ADB: Funding acquisition, Validation, Visualization, Roles/Writing—original draft, Writing. HS: Project administration, Resources, Software, Supervision, Validation, Visualization, Writing—review and editing.

Corresponding author

Correspondence to Hamed Saghaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

The ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancy, have been completely observed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghizade, S., Didari-Bader, A. & Saghaei, H. Ultra-fast tunable optoelectronic 2-to-4 binary decoder using graphene-coated silica rods in photonic crystal ring resonators. Opt Quant Electron 54, 767 (2022). https://doi.org/10.1007/s11082-022-04157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04157-x

Keywords

Navigation