Skip to main content
Log in

Development of Nano-Photonic Structure for Implementation of Frequency Encoded Two-State Pauli X Gate

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We develop an all-optical two-state Pauli X logic gate, using two-dimensional nano-photonic crystals (PhCs) based on photonic-crystal semiconductor optical amplifier switches (pc-SOA). An all-optical two-state Pauli X logic gate device is implemented by exploiting the cross-gain modulation property of pc-SOA (XGM) and the frequency encoding technique, which is constructed using a nano-structured photonic-crystal-based waveguide formed by a 2D square lattice of GaAsInP rods in the air background. The Pauli X gate is constructed within a two-input–two-output channel system. We confirm the operation of an all-optical two-state Pauli X logic gate by two sets of simulation experiments. For the simulation process, we use the finite-difference-time-domain (FDTD) and plane wave expansion (PWE) techniques. The frequency range of the band gap structure is determined in the transverse electric (TE) mode. The pc-SOA is used here for its highly-packed design, less consuming power, very high power transmission, and very good execution of the logic system. The simulation result at the output channels is also checked with the help of the cross-gain modulation (XGM) process. A two-state all-optical Pauli X gate device has a very fast response time (~1 ps), allowing for very fast optical information processing, which is helpful in the field of quantum computation. The speed of operation is on the order of 1 THz. The confinement of light is controlled and dominated by the nano-photonic crystal-based device (PhCs), and the frequency encoding technique can be exploited to improve the performance of the logic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Appl. Phys. Lett., 61, 495 (1992); https://doi.org/10.1063/1.107868.

  2. Y. Trabelsi, N. B. Ali, F. S.-Chaves, and H. V. Posada, Results Phys., 19, 103600 (2020); https://doi.org/10.1016/j.rinp.2020.103600.

  3. S. Lakshan and S. Mukhopadhyay, J. Opt., 52, 317 (2022); https://doi.org/10.1007/s12596-022-00903-2

  4. M. Li, J. Ling, Y. He, et al., Nature Commun., 11, 4123 (2020); https://doi.org/10.1038/s41467-020-17950-7

  5. A. Kotb, K. E. Zoiros, and C. Guo, Opt. Laser Technol., 119, 105611 (2019); https://doi.org/10.1016/j.optlastec.2019.105611

  6. P. Mondal, H. Bhowmik, and S. Mukhopadhyay, Opt. Eng. (USA), 45, 075002 (2006).

    Article  ADS  Google Scholar 

  7. D. G. S. Rao, S. Swarnakar, V. Palacharla, et al., Photonic Netw. Commun., 41, 109 (2021); https://doi.org/10.1007/s11107-020-00916-6

  8. S. H. Kim, J. H. Kim, B. G. Yu, et al., Electron. Lett., 41, 1027 (2005); https://doi.org/10.1049/el:20052320

  9. K. Heydarian, A. Nosratpour, and M. Razaghi, J. Nonlinear Opt. Phys. Mater., 31, 2250013 (2022); https://doi.org/10.1142/S0218863522500138

  10. A. Pashamehr, M. Zavvari, and H. A.-Banaei, Front. Optoelectron., 9, 578 (2016); https://doi.org/10.1007/s12200-016-0513-7

  11. A. Salmanpour, S. Mohammadnejad, and P. T. Omran, Opt. Quantum Electron., 47, 3689 (2015); https://doi.org/10.1007/s11082-015-0238-7

  12. H. A.-Banaei, S. Serajmohammadi, and F. Mehdizadeh, Optik, 125, 5701 (2014); https://doi.org/10.1016/j.ijleo.2014.06.013

  13. A. Kumar and S. Medhekar, Optik, 179, 237 (2019); https://doi.org/10.1016/j.ijleo.2018.10.188

  14. T. A. Moniem, Quantum Electron., 47, 169 (2017); https://doi.org/10.1070/QEL16279

  15. N. Nozhat and N. Granpayeh, Appl. Opt., 54, 7944 (2015); https://doi.org/10.1364/AO.54.007944

  16. M. M. Karkhanehchi, F. Parandin, and A. Zahedi, Photonic Netw. Commun., 33, 159 (2017); https://doi.org/10.1007/s11107-016-0629-0

  17. M. Seifouri, S. Olyaee, M. Sardari, and A. M.-Bahabady, IET Optoelectron., 13, 139 (2019); https://doi.org/10.1049/iet-opt.2018.5130

  18. F. Parandin and M. R. Malmir, Opt. Quantum Electron., 52, 56 (2020); https://doi.org/10.1007/s11082-019-2167-3

  19. D. G. S. Rao, V. Palacharla, S. Swarnakar, and S. Kumar, Appl. Opt., 59, 7139 (2020); https://doi.org/10.1364/AO.400223

  20. T. A. Moniem, Opt. Quantum Electron., 47, 2843 (2015); https://doi.org/10.1007/s11082-015-0173-7

  21. S. S. Z-Dehkordi, M. Soroosh, and G. Akbarizadeh, Opt. Rev., 25, 523 (2018); https://doi.org/10.1007/s10043-018-0443-2

  22. A. Abbasi, M. Noshad, R. Ranjbar, and R. Kheradmand, Opt. Commun., 285, 5073 (2012); https://doi.org/10.1016/j.optcom.2012.06.095

  23. K. M. K. Rao, N. J. Aneela, K. Y. Sri, et al., J. VLSI Circuits and Systems, 3(2), 11 (2021); https://doi.org/10.31838/jvcs/03.02.02

  24. A.-M. Vali-Nasab, A. Mir, and R. Talebzadeh, Opt. Quantum Electron., 51, 161 (2019); https://doi.org/10.1007/s11082-019-1881-1

  25. S. Swarnakar, S. Kumar, and S. Sharma, J. Comput. Electron., 17, 1124 (2018); https://doi.org/10.1007/s10825-018-1177-x

  26. S. Naghizade and H. Saghaei, Opt. Quantum Electron., 53, 154 (2021); https://doi.org/10.1007/s11082-021-02805-2

  27. S. Dey and S. Mukhopadhyay, Electron. Lett., 20, 1375 (2017); https://doi.org/10.1049/el.2017.2500

  28. M. Mandal, I. Goswami, and S. Mukhopadhyay, J. Opt., 52, 145 (2022); https://doi.org/10.1007/s12596-022-00869-1

  29. S. Dey and S. Mukhopadhyay, J. Opt., 48, 520 (2019); https://doi.org/10.1007/s12596-019-00568-4

  30. M. Mandal and S. Mukhopadhyay, IET Optoelectron., 15, 52 (2021); https://doi.org/10.1049/ote2.12008

  31. S. Dey and S. Mukhopadhyay, IET Optoelectron., 12, 176 (2018); https://doi.org/10.1049/iet-opt.2017.0138

  32. M. Hassangholizadeh-Kashtiban, H. Alipour-Banaei, M. B. Tavakoli, and R. Sabbaghi-Nadooshan, J. Comput. Electron., 19, 1281 (2020); https://doi.org/10.1007/s10825-020-01508-3

  33. S. Dey, P. De, and S. Mukhopadhyay, Optoelectron. Lett., 15, 317 (2019); https://doi.org/10.1007/s11801-019-8170-x

  34. D. Mandal, S. Mandal, and S. K. Garai, Opt. Laser Technol., 72, 33 (2015); https://doi.org/10.1016/j.optlastec.2015.03.010

  35. M. Hassangholizadeh-Kashtiban, H. Alipour-Banaei, M. B. Tavakoli, and R. Sabbaghi-Nadooshan, Appl. Opt., 59, 635 (2020); https://doi.org/10.1364/AO.379613

  36. B. Sarkar and S. Mukhopadhyay, J. Opt., 46, 143 (2017); https://doi.org/10.1007/s12596-017-0398-x

  37. M. N. Sarfaraj and S. Mukhopadhyay, Optoelectron. Lett., 17, 746 (2021); https://doi.org/10.1007/s11801-021-1037-y

  38. P. De, S. Ranwa, and S. Mukhopadhyay, IET Optoelectron., 15, 139 (2021); https://doi.org/10.1049/ote2.12029

  39. P. De, S. Ranwa, and S. Mukhopadhyay, Opt. Laser Technol., 152, 108141 (2022); https://doi.org/10.1016/j.optlastec.2022.108141

  40. S. C. Xavier, K. Arunachalam, E. Caroline, and W. Johnson, Opt. Eng., 52, 025201 (2013); https://doi.org/10.1117/1.OE.52.2.025201

  41. S. Rathi, S. Swarnakar, and S. Kumar, J. Opt. Commun., 40, 363 (2017); https://doi.org/10.1515/joc-2017-0084

  42. V. Fakouri-Farid and A. Andalib, Optik, 172, 241 (2018); https://doi.org/10.1016/j.ijleo.2018.06.153

  43. S. Salemian and S. Mohammadnejad, Am. J. Appl. Sci., 5, 1144 (2008).

    Article  Google Scholar 

  44. R. K. Ramakrishnan and S. Talabatulla, Proc. SPIE, 7420, 74200R (2009); https://doi.org/10.1117/12.824192

  45. S. Gasparoni, J.-W. Pan, P. Walther, et al., Phys. Rev. Lett., 93, 020504 (2004); https://doi.org/10.1103/PhysRevLett.93.020504

  46. S. Saha, S. Biswas, and S. Mukhopadhyay, J. Opt., 51, 357 (2022); https://doi.org/10.1007/s12596-021-00786-9

  47. R. Moradi, Quantum Electron., 51, 119 (2019); https://doi.org/10.1007/s11082-019-1831-y

  48. N. Khajeheian, J. Jamali, M. Fatehi-Dindarlou, and M. Taghizadeh, Optik, 245, 167751 (2021); https://doi.org/10.1016/j.ijleo.2021.167751

  49. K. Singh, G. Kaur, and M. L. Singh, Photon. Netw. Commun., 34, 111 (2017); https://doi.org/10.1007/s11107-016-0677-5

  50. H. Lee, H. Yoon, Y. Kim, and J. Jeong, IEEE J. Quantum Electron., 35, 1213 (1999); https://doi.org/10.1109/3.777223

  51. S. H. Kim, J. H. Kim, J. W. Choi, et al., Opt. Express, 14, 10693 (2006); https://doi.org/10.1364/OE.14.010693

  52. K. Heydarian, A. Nosratpour, and M. Razaghi, Opt. Laser Technol., 156, 108531 (2022); https://doi.org/10.1016/j.optlastec.2022.108531

  53. L. E. Pedraza Caballero and O. P. Vilela Neto, J. Integr. Circuits Syst., 16, 1 (2021).

  54. S. K. Garai, J. Mod. Opt., 57, 419 (2010); https://doi.org/10.1080/09500341003692989

  55. A. Nosratpour, M. Razaghi, and G. Darvish, Opt. Commun., 433, 104 (2018); https://doi.org/10.1016/j.optcom.2018.09.062

  56. K. Heydarian, A. Nosratpour, and M. Razaghi, Opt. Eng., 60, 047104 (2021); https://doi.org/10.1117/1.OE.60.4.047104

  57. A. Kotb, E. K. Zoiros, and W. Li, Opt. Quant. Electron., 54, 827 (2022); https://doi.org/10.1007/s11082-022-04160-2

  58. A. Kotb and C. Guo, Opt. Quant. Electron., 52, 89 (2020); https://doi.org/10.1007/s11082-020-2225-x

  59. A. Kotb and K. E. Zoiros, Opt. Commun., 402, 511 (2017); https://doi.org/10.1016/j.optcom.2017.06.050

  60. A. Casas Bedoya, P. Domachuk, C. Grillet, et al., Opt. Express, 20, 11046 (2012); https://doi.org/10.1364/OE.20.011046

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Dey.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, A., Lakshan, S. & Mukhopadhyay, S. Development of Nano-Photonic Structure for Implementation of Frequency Encoded Two-State Pauli X Gate. J Russ Laser Res 44, 458–469 (2023). https://doi.org/10.1007/s10946-023-10153-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10153-7

Keywords

Navigation