Skip to main content

Advertisement

Log in

Glial Glutamine Homeostasis in Health and Disease

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamine is an essential cerebral metabolite. Several critical brain processes are directly linked to glutamine, including ammonia homeostasis, energy metabolism and neurotransmitter recycling. Astrocytes synthesize and release large quantities of glutamine, which is taken up by neurons to replenish the glutamate and GABA neurotransmitter pools. Astrocyte glutamine hereby sustains the glutamate/GABA-glutamine cycle, synaptic transmission and general brain function. Cerebral glutamine homeostasis is linked to the metabolic coupling of neurons and astrocytes, and relies on multiple cellular processes, including TCA cycle function, synaptic transmission and neurotransmitter uptake. Dysregulations of processes related to glutamine homeostasis are associated with several neurological diseases and may mediate excitotoxicity and neurodegeneration. In particular, diminished astrocyte glutamine synthesis is a common neuropathological component, depriving neurons of an essential metabolic substrate and precursor for neurotransmitter synthesis, hereby leading to synaptic dysfunction. While astrocyte glutamine synthesis is quantitatively dominant in the brain, oligodendrocyte-derived glutamine may serve important functions in white matter structures. In this review, the crucial roles of glial glutamine homeostasis in the healthy and diseased brain are discussed. First, we provide an overview of cellular recycling, transport, synthesis and metabolism of glutamine in the brain. These cellular aspects are subsequently discussed in relation to pathological glutamine homeostasis of hepatic encephalopathy, epilepsy, Alzheimer’s disease, Huntington’s disease and amyotrophic lateral sclerosis. Further studies on the multifaceted roles of cerebral glutamine will not only increase our understanding of the metabolic collaboration between brain cells, but may also aid to reveal much needed therapeutic targets of several neurological pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAT:

Aspartate aminotransferase

AD:

Alzheimer’s disease

ALAT:

Alanine aminotransferase

ALS:

Amyotrophic lateral sclerosis

Aβ:

Amyloid-β

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

Cx43:

Connexin 43

EAAT:

Excitatory amino acid transporter

GABA:

γ-Aminobutyric acid

GABA-T:

GABA transaminase

GAD:

Glutamate decarboxylase

GAT:

GABA transporter

GDH:

Glutamate dehydrogenase

GLAST:

Glutamate aspartate transporter 1

GLT-1:

Glutamate transporter-1

GS:

Glutamine synthetase

HD:

Huntington’s disease

HE:

Hepatic encephalopathy

iPSC:

Induced pluripotent stem cell

LAT:

L-type amino acid transporter

MCFA:

Medium-chain fatty acid

MCL:

Molecular carbon labeling

mHtt:

Mutant huntingtin protein

MPT:

Mitochondrial permeability transition

MRS:

Magnetic resonance spectroscopy

MSO:

L-methionine sulfoximine

NFT:

Neurofibrillary tangle

PAG:

Phosphate-activated glutaminase

PC:

Pyruvate carboxylase

ROS:

Reactive oxygen species

SLC:

Solute carrier

SNAT:

Sodium-coupled neutral amino acid transporter

SOD1:

Superoxide dismutase 1

SSADH:

Succinic semialdehyde dehydrogenase

TCA:

Tricarboxylic acid (cycle)

TLE:

Temporal lobe epilepsy

WT:

Wild-type

References

  1. Kanthan R, Shuaib A, Griebel R, Miyashita H (1995) Intracerebral human microdialysis. vivo study of an acute focal ischemic model of the human brain Stroke 26:870–873

    CAS  PubMed  Google Scholar 

  2. Robinson N, Williams CB (1965) Amino acids in human brain. Clin Chim Acta 12:311–317

    Article  CAS  Google Scholar 

  3. Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  CAS  PubMed  Google Scholar 

  4. Bradford HF, Ward HK, Thomas AJ (1978) Glutamine–a major substrate for nerve endings. J Neurochem 30:1453–1459

    Article  CAS  PubMed  Google Scholar 

  5. van den Berg CJ, Garfinkel D (1971) A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    Article  PubMed  Google Scholar 

  6. Benjamin AM, Quastel JH (1972) Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids. Biochem J 128:631–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hertz L (1979) Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol 13:277–323

    Article  CAS  PubMed  Google Scholar 

  8. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  CAS  PubMed  Google Scholar 

  9. Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102

    Article  PubMed  Google Scholar 

  10. Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196:108719

    Article  CAS  PubMed  Google Scholar 

  11. Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98:239–389

    Article  CAS  PubMed  Google Scholar 

  13. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Danbolt NC (2013) GABA and glutamate transporters in Brain. Front Endocrinol (Lausanne) 4:165

    Article  PubMed  Google Scholar 

  15. Tani H, Dulla CG, Farzampour Z, Taylor-Weiner A, Huguenard JR, Reimer RJ (2014) A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron 81:888–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ, Haydon PG, Coulter DA (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13:584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428

    Article  CAS  PubMed  Google Scholar 

  18. Cammer W (1990) Glutamine synthetase in the central nervous system is not confined to astrocytes. J Neuroimmunol 26:173–178

    Article  CAS  PubMed  Google Scholar 

  19. Ben Haim L, Schirmer L, Zulji A, Sabeur K, Tiret B, Ribon M, Chang S, Lamers WH, Boillée S, Chaumeil MM, Rowitch DH (2021) Evidence for glutamine synthetase function in mouse spinal cord oligodendrocytes. Glia 69:2812–2827

    Article  CAS  PubMed  Google Scholar 

  20. Xin W, Mironova YA, Shen H, Marino RAM, Waisman A, Lamers WH, Bergles DE, Bonci A (2019) Oligodendrocytes Support Neuronal Glutamatergic Transmission via Expression of Glutamine Synthetase. Cell Rep 27:2262–2271e2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Häberle J, Görg B, Rutsch F, Schmidt E, Toutain A, Benoist JF, Gelot A, Suc AL, Höhne W, Schliess F, Häussinger D, Koch HG (2005) Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 353:1926–1933

    Article  PubMed  Google Scholar 

  22. Rumping L, Büttner B, Maier O, Rehmann H, Lequin M, Schlump JU, Schmitt B, Schiebergen-Bronkhorst B, Prinsen H, Losa M, Fingerhut R, Lemke JR, Zwartkruis FJT, Houwen RHJ, Jans JJM, Verhoeven-Duif NM, van Hasselt PM, Jamra R (2019) Identification of a Loss-of-Function Mutation in the Context of Glutaminase Deficiency and Neonatal Epileptic Encephalopathy. JAMA Neurol 76:342–350

    Article  PubMed  Google Scholar 

  23. Laake JH, Slyngstad TA, Haug FM, Ottersen OP (1995) Glutamine from glial cells is essential for the maintenance of the nerve terminal pool of glutamate: immunogold evidence from hippocampal slice cultures. J Neurochem 65:871–881

    Article  CAS  PubMed  Google Scholar 

  24. Conti F, Minelli A (1994) Glutamate immunoreactivity in rat cerebral cortex is reversibly abolished by 6-diazo-5-oxo-L-norleucine (DON), an inhibitor of phosphate-activated glutaminase. J Histochem Cytochem 42:717–726

    Article  CAS  PubMed  Google Scholar 

  25. Tapia R, Gonzalez RM (1978) Glutamine and glutamate as precursors of the releasable pool of gaba in brain cortex slices. Neurosci Lett 10:165–169

    Article  CAS  PubMed  Google Scholar 

  26. Thanki CM, Sugden D, Thomas AJ, Bradford HF (1983) In vivo release from cerebral cortex of [14 C]glutamate synthesized from [U-14 C]glutamine. J Neurochem 41:611–617

    Article  CAS  PubMed  Google Scholar 

  27. Ward HK, Thanki CM, Bradford HF (1983) Glutamine and glucose as precursors of transmitter amino acids: ex vivo studies. J Neurochem 40:855–860

    Article  CAS  PubMed  Google Scholar 

  28. Peng L, Hertz L, Huang R, Sonnewald U, Petersen SB, Westergaard N, Larsson O, Schousboe A (1993) Utilization of glutamine and of TCA cycle constituents as precursors for transmitter glutamate and GABA. Dev Neurosci 15:367–377

    Article  CAS  PubMed  Google Scholar 

  29. Reubi JC, Van Der Berg C, Cuénod M (1978) Glutamine as precursor for the GABA and glutamate trasmitter pools. Neurosci Lett 10:171–174

    Article  CAS  PubMed  Google Scholar 

  30. Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgard G, Petersen SB (1993) Direct demonstration by [13 C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22:19–29

    Article  CAS  PubMed  Google Scholar 

  31. Paulsen RE, Odden E, Fonnum F (1988) Importance of glutamine for gamma-aminobutyric acid synthesis in rat neostriatum in vivo. J Neurochem 51:1294–1299

    Article  CAS  PubMed  Google Scholar 

  32. Marx MC, Billups D, Billups B (2015) Maintaining the presynaptic glutamate supply for excitatory neurotransmission. J Neurosci Res 93:1031–1044

    Article  CAS  PubMed  Google Scholar 

  33. Greene JG, Greenamyre JT (1996) Bioenergetics and glutamate excitotoxicity. Prog Neurobiol 48:613–634

    Article  CAS  PubMed  Google Scholar 

  34. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  CAS  PubMed  Google Scholar 

  35. Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720

    Article  CAS  PubMed  Google Scholar 

  36. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, Irwin N, Aoki C, Rosenberg PA (2004) The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci 24:1136–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rimmele TS, Rosenberg PA (2016) GLT-1: The elusive presynaptic glutamate transporter. Neurochem Int 98:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McNair LF, Andersen JV, Aldana BI, Hohnholt MC, Nissen JD, Sun Y, Fischer KD, Sonnewald U, Nyberg N, Webster SC, Kapur K, Rimmele TS, Barone I, Hawks-Mayer H, Lipton JO, Hodgson NW, Hensch TK, Aoki CJ, Rosenberg PA, Waagepetersen HS (2019) Deletion of Neuronal GLT-1 in Mice Reveals Its Role in Synaptic Glutamate Homeostasis and Mitochondrial Function. J Neurosci 39:4847–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McNair LF, Andersen JV, Nissen JD, Sun Y, Fischer KD, Hodgson NW, Du M, Aoki CJ, Waagepetersen HS, Rosenberg PA, Aldana BI (2020) Conditional Knockout of GLT-1 in Neurons Leads to Alterations in Aspartate Homeostasis and Synaptic Mitochondrial Metabolism in Striatum and Hippocampus. Neurochem Res 45:1420–1437

    Article  CAS  PubMed  Google Scholar 

  41. Rimmele TS, Li S, Andersen JV, Westi EW, Rotenberg A, Wang J, Aldana BI, Selkoe DJ, Aoki CJ, Dulla CG, Rosenberg PA (2021) Neuronal Loss of the Glutamate Transporter GLT-1 Promotes Excitotoxic Injury in the Hippocampus. Front Cell Neurosci 15:788262

  42. Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 45:196–212

    Article  CAS  PubMed  Google Scholar 

  43. Hertz L, Rothman DL (2016) Glucose, Lactate, beta-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle. Adv Neurobiol 13:9–42

    Article  PubMed  Google Scholar 

  44. McKenna MC, Stridh MH, McNair LF, Sonnewald U, Waagepetersen HS, Schousboe A (2016) Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94:1561–1571

    Article  CAS  PubMed  Google Scholar 

  45. Schousboe A, Hertz L, Svenneby G (1977) Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem Res 2:217–229

    Article  CAS  PubMed  Google Scholar 

  46. Andersen JV, Jakobsen E, Westi EW, Lie MEK, Voss CM, Aldana BI, Schousboe A, Wellendorph P, Bak LK, Pinborg LH, Waagepetersen HS (2020) Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex. Glia 68:2601–2612

    Article  PubMed  Google Scholar 

  47. Paulsen RE, Fonnum F (1988) Regulation of transmitter gamma-aminobutyric acid (GABA) synthesis and metabolism illustrated by the effect of gamma-vinyl GABA and hypoglycemia. J Neurochem 50:1151–1157

    Article  CAS  PubMed  Google Scholar 

  48. Pierard C, Peres M, Satabin P, Guezennec CY, Lagarde D (1999) Effects of GABA-transaminase inhibition on brain metabolism and amino-acid compartmentation: an in vivo study by 2D 1H-NMR spectroscopy coupled with microdialysis. Exp Brain Res 127:321–327

    Article  CAS  PubMed  Google Scholar 

  49. Kirby T, Walters DC, Brown M, Jansen E, Salomons GS, Turgeon C, Rinaldo P, Arning E, Ashcraft P, Bottiglieri T, Roullet JB, Gibson KM (2020) Post-mortem tissue analyses in a patient with succinic semialdehyde dehydrogenase deficiency (SSADHD). I. Metabolomic outcomes. Metab Brain Dis 35:601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gibson KM, Schor DS, Gupta M, Guerand WS, Senephansiri H, Burlingame TG, Bartels H, Hogema BM, Bottiglieri T, Froestl W, Snead OC, Grompe M, Jakobs C (2002) Focal neurometabolic alterations in mice deficient for succinate semialdehyde dehydrogenase. J Neurochem 81:71–79

    Article  CAS  PubMed  Google Scholar 

  51. Koenig MK, Hodgeman R, Riviello JJ, Chung W, Bain J, Chiriboga CA, Ichikawa K, Osaka H, Tsuji M, Gibson KM, Bonnen PE, Pearl PL (2017) Phenotype of GABA-transaminase deficiency. Neurology 88:1919–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Malaspina P, Roullet JB, Pearl PL, Ainslie GR, Vogel KR, Gibson KM (2016) Succinic semialdehyde dehydrogenase deficiency (SSADHD): Pathophysiological complexity and multifactorial trait associations in a rare monogenic disorder of GABA metabolism. Neurochem Int 99:72–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dienel GA (2019) Brain Glucose Metabolism: Integration of Energetics with Function. Physiol Rev 99:949–1045

    Article  CAS  PubMed  Google Scholar 

  54. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  CAS  PubMed  Google Scholar 

  55. Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation - where do all the carbons go? J Neurochem 131:399–406

    Article  CAS  PubMed  Google Scholar 

  56. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  57. Yu Y, Herman P, Rothman DL, Agarwal D, Hyder F (2018) Evaluating the gray and white matter energy budgets of human brain function. J Cereb Blood Flow Metab 38:1339–1353

    Article  PubMed  Google Scholar 

  58. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A 95:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 102:5588–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hendry SH, Schwark HD, Jones EG, Yan J (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7:1503–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Braitenberg V, Schüz A (1998) Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, Berlin

    Book  Google Scholar 

  62. Oxender DL, Christensen HN (1963) DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem 238:3686–3699

    Article  CAS  PubMed  Google Scholar 

  63. Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769–780

    Article  CAS  PubMed  Google Scholar 

  64. Leke R, Schousboe A (2016) The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle. Adv Neurobiol 13:223–257

    Article  PubMed  Google Scholar 

  65. Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447:784–795

    Article  CAS  PubMed  Google Scholar 

  66. Rodríguez A, Ortega A (2017) Glutamine/Glutamate Transporters in Glial Cells: Much More Than Participants of a Metabolic Shuttle. Adv Neurobiol 16:169–183

    Article  PubMed  Google Scholar 

  67. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632

    Article  CAS  PubMed  Google Scholar 

  68. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F (1998) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395:288–291

    Article  CAS  PubMed  Google Scholar 

  69. Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kühn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274:34948–34954

    Article  CAS  PubMed  Google Scholar 

  70. Deitmer JW, Bröer A, Bröer S (2003) Glutamine efflux from astrocytes is mediated by multiple pathways. J Neurochem 87:127–135

    Article  CAS  PubMed  Google Scholar 

  71. Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y (1999) Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274:19745–19751

    Article  CAS  PubMed  Google Scholar 

  72. Núñez B, Martínez de Mena R, Obregon MJ, Font-Llitjós M, Nunes V, Palacín M, Dumitrescu AM, Morte B, Bernal J (2014) Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation. PLoS ONE 9:e96915

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chaudhry FA, Reimer RJ, Edwards RH (2002) The glutamine commute: take the N line and transfer to the A. J Cell Biol 157:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bröer S, Brookes N (2001) Transfer of glutamine between astrocytes and neurons. J Neurochem 77:705–719

    Article  PubMed  Google Scholar 

  75. Varoqui H, Zhu H, Yao D, Ming H, Erickson JD (2000) Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem 275:4049–4054

    Article  CAS  PubMed  Google Scholar 

  76. Yao D, Mackenzie B, Ming H, Varoqui H, Zhu H, Hediger MA, Erickson JD (2000) A novel system A isoform mediating Na+/neutral amino acid cotransport. J Biol Chem 275:22790–22797

    Article  CAS  PubMed  Google Scholar 

  77. Sugawara M, Nakanishi T, Fei YJ, Martindale RG, Ganapathy ME, Leibach FH, Ganapathy V (2000) Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim Biophys Acta 1509:7–13

    Article  CAS  PubMed  Google Scholar 

  78. Nakanishi T, Kekuda R, Fei YJ, Hatanaka T, Sugawara M, Martindale RG, Leibach FH, Prasad PD, Ganapathy V (2001) Cloning and functional characterization of a new subtype of the amino acid transport system N. Am J Physiol Cell Physiol 281:C1757–1768

    Article  CAS  PubMed  Google Scholar 

  79. Hägglund MG, Sreedharan S, Nilsson VC, Shaik JH, Almkvist IM, Bäcklin S, Wrange O, Fredriksson R (2011) Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem 286:20500–20511

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hägglund MGA, Hellsten SV, Bagchi S, Philippot G, Löfqvist E, Nilsson VCO, Almkvist I, Karlsson E, Sreedharan S, Tafreshiha A, Fredriksson R (2015) Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS. J Mol Biol 427:1495–1512

    Article  PubMed  Google Scholar 

  81. Chaudhry FA, Schmitz D, Reimer RJ, Larsson P, Gray AT, Nicoll R, Kavanaugh M, Edwards RH (2002) Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci 22:62–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Boulland JL, Osen KK, Levy LM, Danbolt NC, Edwards RH, Storm-Mathisen J, Chaudhry FA (2002) Cell-specific expression of the glutamine transporter SN1 suggests differences in dependence on the glutamine cycle. Eur J Neurosci 15:1615–1631

    Article  PubMed  Google Scholar 

  83. Boulland JL, Rafiki A, Levy LM, Storm-Mathisen J, Chaudhry FA (2003) Highly differential expression of SN1, a bidirectional glutamine transporter, in astroglia and endothelium in the developing rat brain. Glia 41:260–275

    Article  PubMed  Google Scholar 

  84. Cubelos B, González-González IM, Giménez C, Zafra F (2005) Amino acid transporter SNAT5 localizes to glial cells in the rat brain. Glia 49:230–244

    Article  PubMed  Google Scholar 

  85. Zielińska M, Dąbrowska K, Hadera MG, Sonnewald U, Albrecht J (2016) System N transporters are critical for glutamine release and modulate metabolic fluxes of glucose and acetate in cultured cortical astrocytes: changes induced by ammonia. J Neurochem 136:329–338

    Article  PubMed  Google Scholar 

  86. Hamdani EH, Popek M, Frontczak-Baniewicz M, Utheim TP, Albrecht J, Zielińska M, Chaudhry FA (2021) Perturbation of astroglial Slc38 glutamine transporters by NH(4) (+) contributes to neurophysiologic manifestations in acute liver failure. Faseb j 35:e21588

    Article  CAS  PubMed  Google Scholar 

  87. Solbu TT, Bjørkmo M, Berghuis P, Harkany T, Chaudhry FA (2010) SAT1, A Glutamine Transporter, is Preferentially Expressed in GABAergic Neurons. Front Neuroanat 4:1

    PubMed  PubMed Central  Google Scholar 

  88. Melone M, Quagliano F, Barbaresi P, Varoqui H, Erickson JD, Conti F (2004) Localization of the glutamine transporter SNAT1 in rat cerebral cortex and neighboring structures, with a note on its localization in human cortex. Cereb Cortex 14:562–574

    Article  PubMed  Google Scholar 

  89. González-González IM, Cubelos B, Giménez C, Zafra F (2005) Immunohistochemical localization of the amino acid transporter SNAT2 in the rat brain. Neuroscience 130:61–73

    Article  PubMed  Google Scholar 

  90. Jenstad M, Quazi AZ, Zilberter M, Haglerød C, Berghuis P, Saddique N, Goiny M, Buntup D, Davanger S, FM SH, Barnes CA, McNaughton BL, Ottersen OP, Storm-Mathisen J, Harkany T, Chaudhry FA (2009) System A transporter SAT2 mediates replenishment of dendritic glutamate pools controlling retrograde signaling by glutamate. Cereb Cortex 19:1092–1106

    Article  PubMed  Google Scholar 

  91. Mackenzie B, Schäfer MK, Erickson JD, Hediger MA, Weihe E, Varoqui H (2003) Functional properties and cellular distribution of the system A glutamine transporter SNAT1 support specialized roles in central neurons. J Biol Chem 278:23720–23730

    Article  CAS  PubMed  Google Scholar 

  92. Melone M, Varoqui H, Erickson JD, Conti F (2006) Localization of the Na(+)-coupled neutral amino acid transporter 2 in the cerebral cortex. Neuroscience 140:281–292

    Article  CAS  PubMed  Google Scholar 

  93. Qureshi T, Bjørkmo M, Nordengen K, Gundersen V, Utheim TP, Watne LO, Storm-Mathisen J, Hassel B, Chaudhry FA (2020) Slc38a1 Conveys Astroglia-Derived Glutamine into GABAergic Interneurons for Neurotransmitter GABA Synthesis. Cells 9

  94. Qureshi T, Sørensen C, Berghuis P, Jensen V, Dobszay MB, Farkas T, Dalen KT, Guo C, Hassel B, Utheim TP, Hvalby Ø, Hafting T, Harkany T, Fyhn M, Chaudhry FA (2019) The Glutamine Transporter Slc38a1 Regulates GABAergic Neurotransmission and Synaptic Plasticity. Cereb Cortex 29:5166–5179

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cheung G, Bataveljic D, Visser J, Kumar N, Moulard J, Dallérac G, Mozheiko D, Rollenhagen A, Ezan P, Mongin C, Chever O, Bemelmans AP, Lübke J, Leray I, Rouach N (2022) Physiological synaptic activity and recognition memory require astroglial glutamine. Nat Commun 13:753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    Article  CAS  PubMed  Google Scholar 

  97. Pannasch U, Vargová L, Reingruber J, Ezan P, Holcman D, Giaume C, Syková E, Rouach N (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A 108:8467–8472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marques S, van Bruggen D, Vanichkina DP, Floriddia EM, Munguba H, Väremo L, Giacomello S, Falcão AM, Meijer M, Björklund ÃK, Hjerling-Leffler J, Taft RJ, Castelo-Branco G (2018) Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development. Dev Cell 46:504–517e507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Krebs HA (1935) Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 29:1951–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Elliott WH (1948) Adenosinetriphosphate in glutamine synthesis. Nature 161:128

    Article  CAS  PubMed  Google Scholar 

  101. Norenberg MD (1979) The distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27:756–762

    Article  CAS  PubMed  Google Scholar 

  102. Patel AJ, Weir MD, Hunt A, Tahourdin CS, Thomas DG (1985) Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of the rat central nervous system. Brain Res 331:1–9

    Article  CAS  PubMed  Google Scholar 

  103. Miyake T, Kitamura T (1992) Glutamine synthetase immunoreactivity in two types of mouse brain glial cells. Brain Res 586:53–60

    Article  CAS  PubMed  Google Scholar 

  104. Bernstein HG, Bannier J, Meyer-Lotz G, Steiner J, Keilhoff G, Dobrowolny H, Walter M, Bogerts B (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization. J Chem Neuroanat 61–62:33–50

    Article  PubMed  Google Scholar 

  105. Kluge H, Hartmann W, Wieczorek V (1971) The regional distribution of glutamine synthetase (transferase) in brain of normal and chlorpromazine-treated rats. Brain Res 32:266–268

    Article  CAS  PubMed  Google Scholar 

  106. Berl S (1966) Glutamine synthetase. Determination of its distribution in brain during development. Biochemistry 5:916–922

    Article  CAS  PubMed  Google Scholar 

  107. Vogel WH, Heginbothom SD, Boehme DH (1975) Glutamic acid decarboxylase, glutamine synthase and glutamic acid dehydrogenase in various areas of human brain. Brain Res 88:131–135

    Article  CAS  PubMed  Google Scholar 

  108. Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29:999–1005

    Article  CAS  PubMed  Google Scholar 

  109. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Article  CAS  PubMed  Google Scholar 

  110. Riepe RE, Norenberg MD (1977) Müller cell localisation of glutamine synthetase in rat retina. Nature 268:654–655

    Article  CAS  PubMed  Google Scholar 

  111. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  112. Derouiche A, Frotscher M (1991) Astroglial processes around identified glutamatergic synapses contain glutamine synthetase: evidence for transmitter degradation. Brain Res 552:346–350

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto H, Konno H, Yamamoto T, Ito K, Mizugaki M, Iwasaki Y (1987) Glutamine synthetase of the human brain: purification and characterization. J Neurochem 49:603–609

    Article  CAS  PubMed  Google Scholar 

  114. Ong WY, Garey LJ, Reynolds R (1993) Distribution of glial fibrillary acidic protein and glutamine synthetase in human cerebral cortical astrocytes–a light and electron microscopic study. J Neurocytol 22:893–902

    Article  CAS  PubMed  Google Scholar 

  115. Ong WY, Garey LJ, Leong SK, Reynolds R (1995) Localization of glial fibrillary acidic protein and glutamine synthetase in the human cerebral cortex and subcortical white matter–a double immunolabelling and electron microscopic study. J Neurocytol 24:602–610

    Article  CAS  PubMed  Google Scholar 

  116. Robinson SR (2000) Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36:471–482

    Article  CAS  PubMed  Google Scholar 

  117. Robinson SR (2001) Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease. J Neurosci Res 66:972–980

    Article  CAS  PubMed  Google Scholar 

  118. Tansey FA, Farooq M, Cammer W (1991) Glutamine synthetase in oligodendrocytes and astrocytes: new biochemical and immunocytochemical evidence. J Neurochem 56:266–272

    Article  CAS  PubMed  Google Scholar 

  119. D’Amelio F, Eng LF, Gibbs MA (1990) Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system. Glia 3:335–341

    Article  PubMed  Google Scholar 

  120. Takasaki C, Yamasaki M, Uchigashima M, Konno K, Yanagawa Y, Watanabe M (2010) Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex. Eur J Neurosci 32:1326–1336

    Article  PubMed  Google Scholar 

  121. Anlauf E, Derouiche A (2013) Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front Endocrinol (Lausanne) 4:144

    Article  PubMed  Google Scholar 

  122. Warringa RA, van Berlo MF, Klein W, Lopes-Cardozo M (1988) Cellular location of glutamine synthetase and lactate dehydrogenase in oligodendrocyte-enriched cultures from rat brain. J Neurochem 50:1461–1468

    Article  CAS  PubMed  Google Scholar 

  123. Amaral AI, Hadera MG, Tavares JM, Kotter MR, Sonnewald U (2016) Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia 64:21–34

    Article  PubMed  Google Scholar 

  124. Wyss MT, Magistretti PJ, Buck A, Weber B (2011) Labeled acetate as a marker of astrocytic metabolism. J Cereb Blood Flow Metab 31:1668–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch U-K, Philips M-A, Rossner MJ, Mann M, Simons M (2015) Cell type– and brain region–resolved mouse brain proteome. Nat Neurosci 18:1819–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bidmon HJ, Görg B, Palomero-Gallagher N, Schleicher A, Häussinger D, Speckmann EJ, Zilles K (2008) Glutamine synthetase becomes nitrated and its activity is reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy. Epilepsia 49:1733–1748

    Article  CAS  PubMed  Google Scholar 

  128. Nguyen TV, Lee JE, Sweredoski MJ, Yang SJ, Jeon SJ, Harrison JS, Yim JH, Lee SG, Handa H, Kuhlman B, Jeong JS, Reitsma JM, Park CS, Hess S, Deshaies RJ (2016) Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon. Mol Cell 61:809–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wan J, Savas JN, Roth AF, Sanders SS, Singaraja RR, Hayden MR, Yates JR 3, Davis NG (2013) Tracking brain palmitoylation change: predominance of glial change in a mouse model of Huntington’s disease. Chem Biol 20:1421–1434

    Article  CAS  PubMed  Google Scholar 

  130. Huyghe D, Denninger AR, Voss CM, Frank P, Gao N, Brandon N, Waagepetersen HS, Ferguson AD, Pangalos M, Doig P, Moss SJ (2019) Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Front Mol Neurosci 12:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. He Y, Hakvoort TB, Vermeulen JL, Labruyère WT, De Waart DR, Van Der Hel WS, Ruijter JM, Uylings HB, Lamers WH (2010) Glutamine synthetase deficiency in murine astrocytes results in neonatal death. Glia 58:741–754

    PubMed  Google Scholar 

  132. Zhou Y, Dhaher R, Parent M, Hu QX, Hassel B, Yee SP, Hyder F, Gruenbaum SE, Eid T, Danbolt NC (2019) Selective deletion of glutamine synthetase in the mouse cerebral cortex induces glial dysfunction and vascular impairment that precede epilepsy and neurodegeneration. Neurochem Int 123:22–33

    Article  CAS  PubMed  Google Scholar 

  133. Lamar C Jr, Sellinger OZ (1965) THE INHIBITION IN VIVO OF CEREBRAL GLUTAMINE SYNTHETASE AND GLUTAMINE TRANSFERASE BY THE CONVULSANT METHIONINE SULFOXIMINE. Biochem Pharmacol 14:489–506

    Article  CAS  PubMed  Google Scholar 

  134. Rowe WB, Meister A (1970) Identification of L-methionine-S-sulfoximine as the convulsant isomer of methionine sulfoximine. Proc Natl Acad Sci U S A 66:500–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Folbergrová J, Passonneau JV, Lowry OH, Schulz DW (1969) Glycogen, ammonia and related metabolities in the brain during seizures evoked by methionine sulphoximine. J Neurochem 16:191–203

    Article  PubMed  Google Scholar 

  136. Eid T, Ghosh A, Wang Y, Beckström H, Zaveri HP, Lee TS, Lai JC, Malthankar-Phatak GH, de Lanerolle NC (2008) Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain 131:2061–2070

    Article  PubMed  PubMed Central  Google Scholar 

  137. Dhaher R, Wang H, Gruenbaum SE, Tu N, Lee TS, Zaveri HP, Eid T (2015) Effects of site-specific infusions of methionine sulfoximine on the temporal progression of seizures in a rat model of mesial temporal lobe epilepsy. Epilepsy Res 115:45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fonnum F, Paulsen RE (1990) Comparison of transmitter amino acid levels in rat globus pallidus and neostriatum during hypoglycemia or after treatment with methionine sulfoximine or gamma-vinyl gamma-aminobutyric acid. J Neurochem 54:1253–1257

    Article  CAS  PubMed  Google Scholar 

  139. Somers DL, Beckstead RM (1990) Chronic methionine sulfoximine administration reduces synaptosomal aspartate and glutamate in rat striatum. Neurosci Lett 115:335–340

    Article  CAS  PubMed  Google Scholar 

  140. Böttcher T, Goiny M, Bering J, Domhof S, Nau R, Ungerstedt U (2003) Regional differences in glutamine synthetase inhibition by L-methionine sulfoximine: a microdialysis study in the rabbit brain. Exp Brain Res 150:194–200

    Article  PubMed  Google Scholar 

  141. Andersen JV, McNair LF, Schousboe A, Waagepetersen HS (2017) Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis. J Neurosci Res 95:2207–2216

    Article  CAS  PubMed  Google Scholar 

  142. Liang SL, Carlson GC, Coulter DA (2006) Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J Neurosci 26:8537–8548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cooper AJ, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE (1979) The metabolic fate of 13 N-labeled ammonia in rat brain. J Biol Chem 254:4982–4992

    Article  CAS  PubMed  Google Scholar 

  144. Cooper AJ (2012) The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37:2439–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Suárez I, Bodega G, Fernández B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41:123–142

    Article  PubMed  Google Scholar 

  146. Zou J, Wang YX, Dou FF, Lü HZ, Ma ZW, Lu PH, Xu XM (2010) Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem Int 56:577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Trabelsi Y, Amri M, Becq H, Molinari F, Aniksztejn L (2017) The conversion of glutamate by glutamine synthase in neocortical astrocytes from juvenile rat is important to limit glutamate spillover and peri/extrasynaptic activation of NMDA receptors. Glia 65:401–415

    Article  PubMed  Google Scholar 

  148. Fonseca LL, Monteiro MA, Alves PM, Carrondo MJ, Santos H (2005) Cultures of rat astrocytes challenged with a steady supply of glutamate: new model to study flux distribution in the glutamate-glutamine cycle. Glia 51:286–296

    Article  PubMed  Google Scholar 

  149. Tiburcio-Félix R, Escalante-López M, López-Bayghen B, Martínez D, Hernández-Kelly LC, Zinker S, Hernández-Melchor D, López-Bayghen E, Olivares-Bañuelos TN, Ortega A (2018) Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells. Mol Neurobiol 55:5202–5209

    Article  PubMed  Google Scholar 

  150. Mearow KM, Mill JF, Freese E (1990) Neuron-glial interactions involved in the regulation of glutamine synthetase. Glia 3:385–392

    Article  CAS  PubMed  Google Scholar 

  151. Wu DK, Scully S, de Vellis J (1988) Induction of glutamine synthetase in rat astrocytes by co-cultivation with embryonic chick neurons. J Neurochem 50:929–935

    Article  CAS  PubMed  Google Scholar 

  152. Mamczur P, Borsuk B, Paszko J, Sas Z, Mozrzymas J, Wiśniewski JR, Gizak A, Rakus D (2015) Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes. Glia 63:328–340

    Article  PubMed  Google Scholar 

  153. Fonnum F, Johnsen A, Hassel B (1997) Use of fluorocitrate and fluoroacetate in the study of brain metabolism. Glia 21:106–113

    Article  CAS  PubMed  Google Scholar 

  154. Swanson RA, Graham SH (1994) Fluorocitrate and fluoroacetate effects on astrocyte metabolism in vitro. Brain Res 664:94–100

    Article  CAS  PubMed  Google Scholar 

  155. Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    Article  CAS  PubMed  Google Scholar 

  156. Schousboe A, Waagepetersen HS, Sonnewald U (2019) Astrocytic pyruvate carboxylation: Status after 35 years. J Neurosci Res 97:890–896

    Article  CAS  PubMed  Google Scholar 

  157. Öz G, Berkich DA, Henry PG, Xu Y, LaNoue K, Hutson SM, Gruetter R (2004) Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24:11273–11279

    Article  PubMed  PubMed Central  Google Scholar 

  158. Voss CM, Andersen JV, Jakobsen E, Siamka O, Karaca M, Maechler P, Waagepetersen HS (2020) AMP-activated protein kinase (AMPK) regulates astrocyte oxidative metabolism by balancing TCA cycle dynamics. Glia 68:1824–1839

    Article  PubMed  Google Scholar 

  159. McNair LM, Mason GF, Chowdhury GM, Jiang L, Ma X, Rothman DL, Waagepetersen HS, Behar KL (2022) Rates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2-(13)C]/[1-(13)C]glucose infusion and (1)H-[(13)C]NMR ex vivo.J Cereb Blood Flow Metab:271678x221074211

  160. Lapidot A, Gopher A (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13 C NMR isotopomer analysis of D-[U-13 C]glucose metabolites. J Biol Chem 269:27198–27208

    Article  CAS  PubMed  Google Scholar 

  161. Gamberino WC, Berkich DA, Lynch CJ, Xu B, LaNoue KF (1997) Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J Neurochem 69:2312–2325

    Article  CAS  PubMed  Google Scholar 

  162. Perry TL, Haworth JC, Robinson BH (1985) Brain amino acid abnormalities in pyruvate carboxylase deficiency. J Inherit Metab Dis 8:63–66

    Article  CAS  PubMed  Google Scholar 

  163. Obel LF, Müller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenergetics 4:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bak LK, Walls AB, Schousboe A, Waagepetersen HS (2018) Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 293:7108–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Walls AB, Heimbürger CM, Bouman SD, Schousboe A, Waagepetersen HS (2009) Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents. Neuroscience 158:284–292

    Article  CAS  PubMed  Google Scholar 

  166. Sickmann HM, Walls AB, Schousboe A, Bouman SD, Waagepetersen HS (2009) Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem 109(Suppl 1):80–86

    Article  CAS  PubMed  Google Scholar 

  167. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Phelps CH (1975) An ultrastructural study of methionine sulphoximine-induced glycogen accumulation in astrocytes of the mouse cerebral cortex. J Neurocytol 4:479–490

    Article  CAS  PubMed  Google Scholar 

  169. Swanson RA, Yu AC, Sharp FR, Chan PH (1989) Regulation of glycogen content in primary astrocyte culture: effects of glucose analogues, phenobarbital, and methionine sulfoximine. J Neurochem 52:1359–1365

    Article  CAS  PubMed  Google Scholar 

  170. Yamamoto T, Iwasaki Y, Sato Y, Yamamoto H, Konno H (1989) Astrocytic pathology of methionine sulfoximine-induced encephalopathy. Acta Neuropathol 77:357–368

    Article  CAS  PubMed  Google Scholar 

  171. Cloix JF, Tahi Z, Boissonnet A, Hévor T (2010) Brain glycogen and neurotransmitter levels in fast and slow methionine sulfoximine-selected mice. Exp Neurol 225:274–283

    Article  CAS  PubMed  Google Scholar 

  172. Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222

    Article  PubMed  Google Scholar 

  173. Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-García JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33:550–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gibbs ME, Lloyd HG, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85:3326–3333

    Article  CAS  PubMed  Google Scholar 

  175. Son H, Kim S, Jung DH, Baek JH, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Lee DK, Kim HJ (2019) Insufficient glutamine synthetase activity during synaptogenesis causes spatial memory impairment in adult mice. Sci Rep 9:252

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gibbs ME, O’Dowd BS, Hertz L, Robinson SR, Sedman GL, Ng KT (1996) Inhibition of glutamine synthetase activity prevents memory consolidation. Brain Res Cogn Brain Res 4:57–64

    Article  CAS  PubMed  Google Scholar 

  177. Campos-Sandoval JA, Martín-Rufián M, Cardona C, Lobo C, Peñalver A, Márquez J (2015) Glutaminases in brain: Multiple isoforms for many purposes. Neurochem Int 88:1–5

    Article  CAS  PubMed  Google Scholar 

  178. Errera M, Greenstein JP (1949) Phosphate-activated glutaminase in kidney and other tissues. J Biol Chem 178:495–502

    Article  CAS  PubMed  Google Scholar 

  179. Aledo JC, Gómez-Fabre PM, Olalla L, Márquez J (2000) Identification of two human glutaminase loci and tissue-specific expression of the two related genes. Mamm Genome 11:1107–1110

    Article  CAS  PubMed  Google Scholar 

  180. Aoki C, Kaneko T, Starr A, Pickel VM (1991) Identification of mitochondrial and non-mitochondrial glutaminase within select neurons and glia of rat forebrain by electron microscopic immunocytochemistry. J Neurosci Res 28:531–548

    Article  CAS  PubMed  Google Scholar 

  181. Laake JH, Takumi Y, Eidet J, Torgner IA, Roberg B, Kvamme E, Ottersen OP (1999) Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88:1137–1151

    Article  CAS  PubMed  Google Scholar 

  182. Cardona C, Sánchez-Mejías E, Dávila JC, Martín-Rufián M, Campos-Sandoval JA, Vitorica J, Alonso FJ, Matés JM, Segura JA, Norenberg MD, Rama Rao KV, Jayakumar AR, Gutiérrez A, Márquez J (2015) Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia 63:365–382

    Article  PubMed  Google Scholar 

  183. Botman D, Tigchelaar W, Van Noorden CJ (2014) Determination of phosphate-activated glutaminase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry). J Histochem Cytochem 62:813–826

    Article  PubMed  Google Scholar 

  184. Olalla L, Gutiérrez A, Campos JA, Khan ZU, Alonso FJ, Segura JA, Márquez J, Aledo JC (2002) Nuclear localization of L-type glutaminase in mammalian brain. J Biol Chem 277:38939–38944

    Article  CAS  PubMed  Google Scholar 

  185. Gaisler-Salomon I, Wang Y, Chuhma N, Zhang H, Golumbic YN, Mihali A, Arancio O, Sibille E, Rayport S (2012) Synaptic underpinnings of altered hippocampal function in glutaminase-deficient mice during maturation. Hippocampus 22:1027–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kvamme E, Roberg B, Torgner IA (2000) Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res 25:1407–1419

    Article  CAS  PubMed  Google Scholar 

  187. Donoghue JP, Wenthold RJ, Altschuler RA (1985) Localization of glutaminase-like and aspartate aminotransferase-like immunoreactivity in neurons of cerebral neocortex. J Neurosci 5:2597–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Schousboe A, Hertz L, Svenneby G, Kvamme E (1979) Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J Neurochem 32:943–950

    Article  CAS  PubMed  Google Scholar 

  189. Kvamme E, Svenneby G, Hertz L, Schousboe A (1982) Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochem Res 7:761–770

    Article  CAS  PubMed  Google Scholar 

  190. Patel AJ, Hunt A, Gordon RD, Balázs R (1982) The activities in different neural cell types of certain enzymes associated with the metabolic compartmentation glutamate. Brain Res 256:3–11

    Article  CAS  PubMed  Google Scholar 

  191. Hogstad S, Svenneby G, Torgner IA, Kvamme E, Hertz L, Schousboe A (1988) Glutaminase in neurons and astrocytes cultured from mouse brain: kinetic properties and effects of phosphate, glutamate, and ammonia. Neurochem Res 13:383–388

    Article  CAS  PubMed  Google Scholar 

  192. Erecińska M, Silver IA (1990) Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 35:245–296

    Article  PubMed  Google Scholar 

  193. Márquez J, Matés JM, Campos-Sandoval JA (2016) Glutaminases Adv Neurobiol 13:133–171

    Article  PubMed  Google Scholar 

  194. Salganicoff L, Derobertis E (1965) SUBCELLULAR DISTRIBUTION OF THE ENZYMES OF THE GLUTAMIC ACID, GLUTAMINE AND GAMMA-AMINOBUTYRIC ACID CYCLES IN RAT BRAIN. J Neurochem 12:287–309

    Article  CAS  PubMed  Google Scholar 

  195. Svenneby G, Roberg B, Hogstad S, Torgner IA, Kvamme E (1986) Phosphate-activated glutaminase in the crude mitochondrial fraction (P2 fraction) from human brain cortex. J Neurochem 47:1351–1355

    Article  CAS  PubMed  Google Scholar 

  196. Bak LK, Ziemińska E, Waagepetersen HS, Schousboe A, Albrecht J (2008) Metabolism of [U-13 C]glutamine and [U-13 C]glutamate in isolated rat brain mitochondria suggests functional phosphate-activated glutaminase activity in matrix. Neurochem Res 33:273–278

    Article  CAS  PubMed  Google Scholar 

  197. Masson J, Darmon M, Conjard A, Chuhma N, Ropert N, Thoby-Brisson M, Foutz AS, Parrot S, Miller GM, Jorisch R, Polan J, Hamon M, Hen R, Rayport S (2006) Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J Neurosci 26:4660–4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gaisler-Salomon I, Miller GM, Chuhma N, Lee S, Zhang H, Ghoddoussi F, Lewandowski N, Fairhurst S, Wang Y, Conjard-Duplany A, Masson J, Balsam P, Hen R, Arancio O, Galloway MP, Moore HM, Small SA, Rayport S (2009) Glutaminase-deficient mice display hippocampal hypoactivity, insensitivity to pro-psychotic drugs and potentiated latent inhibition: relevance to schizophrenia. Neuropsychopharmacology 34:2305–2322

    Article  CAS  PubMed  Google Scholar 

  199. van Kuilenburg ABP, Tarailo-Graovac M, Richmond PA, Drögemöller BI, Pouladi MA, Leen R, Brand-Arzamendi K, Dobritzsch D, Dolzhenko E, Eberle MA, Hayward B, Jones MJ, Karbassi F, Kobor MS, Koster J, Kumari D, Li M, MacIsaac J, McDonald C, Meijer J, Nguyen C, Rajan-Babu IS, Scherer SW, Sim B, Trost B, Tseng LA, Turkenburg M, van Vugt J, Veldink JH, Walia JS, Wang Y, van Weeghel M, Wright GEB, Xu X, Yuen RKC, Zhang J, Ross CJ, Wasserman WW, Geraghty MT, Santra S, Wanders RJA, Wen XY, Waterham HR, Usdin K, van Karnebeek CDM (2019) Glutaminase Deficiency Caused by Short Tandem Repeat Expansion in GLS. N Engl J Med 380:1433–1441

    Article  PubMed  PubMed Central  Google Scholar 

  200. El Hage M, Masson J, Conjard-Duplany A, Ferrier B, Baverel G, Martin G (2012) Brain slices from glutaminase-deficient mice metabolize less glutamine: a cellular metabolomic study with carbon 13 NMR. J Cereb Blood Flow Metab 32:816–824

    Article  PubMed  PubMed Central  Google Scholar 

  201. Tildon JT, Roeder LM (1984) Glutamine oxidation by dissociated cells and homogenates of rat brain: kinetics and inhibitor studies. J Neurochem 42:1069–1076

    Article  CAS  PubMed  Google Scholar 

  202. Tildon JT, Roeder LM, Stevenson JH (1985) Substrate oxidation by isolated rat brain mitochondria and synaptosomes. J Neurosci Res 14:207–215

    Article  CAS  PubMed  Google Scholar 

  203. Roeder LM, Tildon JT, Holman DC (1984) Competition among oxidizable substrates in brains of young and adult rats. Dissociated cells. Biochem J 219:131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Roeder LM, Tildon JT, Stevenson JH Jr (1984) Competition among oxidizable substrates in brains of young and adult rats. Whole homogenates. Biochem J 219:125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yu AC, Fisher TE, Hertz E, Tildon JT, Schousboe A, Hertz L (1984) Metabolic fate of [14 C]-glutamine in mouse cerebral neurons in primary cultures. J Neurosci Res 11:351–357

    Article  CAS  PubMed  Google Scholar 

  206. McKenna MC (2012) Substrate competition studies demonstrate oxidative metabolism of glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate in cortical astrocytes from rat brain. Neurochem Res 37:2613–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hohnholt MC, Andersen VH, Andersen JV, Christensen SK, Karaca M, Maechler P, Waagepetersen HS (2018) Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation. J Cereb Blood Flow Metab 38:1754–1768

    Article  CAS  PubMed  Google Scholar 

  208. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  CAS  PubMed  Google Scholar 

  209. McKenna MC, Tildon JT, Stevenson JH, Huang X (1996) New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes. Dev Neurosci 18:380–390

    Article  CAS  PubMed  Google Scholar 

  210. Huang R, Hertz L (1995) Noradrenaline-induced stimulation of glutamine metabolism in primary cultures of astrocytes. J Neurosci Res 41:677–683

    Article  CAS  PubMed  Google Scholar 

  211. Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L, Hertz L (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15:359–366

    Article  CAS  PubMed  Google Scholar 

  212. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  213. Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67:2566–2572

    Article  CAS  PubMed  Google Scholar 

  214. Sonnewald U, Westergaard N, Petersen SB, Unsgård G, Schousboe A (1993) Metabolism of [U-13 C]glutamate in astrocytes studied by 13 C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    Article  CAS  PubMed  Google Scholar 

  215. Qu H, Konradsen JR, van Hengel M, Wolt S, Sonnewald U (2001) Effect of glutamine and GABA on [U-(13)C]glutamate metabolism in cerebellar astrocytes and granule neurons. J Neurosci Res 66:885–890

    Article  CAS  PubMed  Google Scholar 

  216. McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  CAS  PubMed  Google Scholar 

  217. Bradford HF, Ward HK (1976) On glutaminase activity in mammalian synaptosomes. Brain Res 110:115–125

    Article  CAS  PubMed  Google Scholar 

  218. Hohnholt MC, Andersen VH, Bak LK, Waagepetersen HS (2017) Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals. Neurochem Res 42:191–201

    Article  CAS  PubMed  Google Scholar 

  219. Yudkoff M, Nelson D, Daikhin Y, Erecińska M (1994) Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 269:27414–27420

    Article  CAS  PubMed  Google Scholar 

  220. Sonnewald U, McKenna M (2002) Metabolic compartmentation in cortical synaptosomes: influence of glucose and preferential incorporation of endogenous glutamate into GABA. Neurochem Res 27:43–50

    Article  CAS  PubMed  Google Scholar 

  221. Yu AC, Schousboe A, Hertz L (1982) Metabolic fate of 14 C-labeled glutamate in astrocytes in primary cultures. J Neurochem 39:954–960

    Article  CAS  PubMed  Google Scholar 

  222. Peng L, Gu L, Zhang H, Huang X, Hertz E, Hertz L (2007) Glutamine as an energy substrate in cultured neurons during glucose deprivation. J Neurosci Res 85:3480–3486

    Article  CAS  PubMed  Google Scholar 

  223. Westergaard N, Sonnewald U, Petersen SB, Schousboe A (1995) Glutamate and glutamine metabolism in cultured GABAergic neurons studied by 13 C NMR spectroscopy may indicate compartmentation and mitochondrial heterogeneity. Neurosci Lett 185:24–28

    Article  CAS  PubMed  Google Scholar 

  224. Zielke HR, Collins RM Jr, Baab PJ, Huang Y, Zielke CL, Tildon JT (1998) Compartmentation of [14 C]glutamate and [14 C]glutamine oxidative metabolism in the rat hippocampus as determined by microdialysis. J Neurochem 71:1315–1320

    Article  CAS  PubMed  Google Scholar 

  225. Olstad E, Qu H, Sonnewald U (2007) Glutamate is preferred over glutamine for intermediary metabolism in cultured cerebellar neurons. J Cereb Blood Flow Metab 27:811–820

    Article  CAS  PubMed  Google Scholar 

  226. Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13 C-NMR spectroscopy. Dev Neurosci 20:310–320

    Article  CAS  PubMed  Google Scholar 

  227. Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (1999) Synthesis of vesicular GABA from glutamine involves TCA cycle metabolism in neocortical neurons. J Neurosci Res 57:342–349

    Article  CAS  PubMed  Google Scholar 

  228. Waagepetersen HS, Sonnewald U, Gegelashvili G, Larsson OM, Schousboe A (2001) Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13 C magnetic resonance spectroscopy. J Neurosci Res 63:347–355

    Article  CAS  PubMed  Google Scholar 

  229. Andersen JV, Nissen JD, Christensen SK, Markussen KH, Waagepetersen HS (2017) Impaired Hippocampal Glutamate and Glutamine Metabolism in the db/db Mouse Model of Type 2 Diabetes Mellitus. Neural Plast 2017:2107084

    Article  PubMed  PubMed Central  Google Scholar 

  230. Waagepetersen HS, Døring S, Schousboe A (2008) Metabolism of [1,6-(13)C]glucose and [U-(13)C]glutamine and depolarization induced GABA release in superfused mouse cerebral cortical mini-slices. Neurochem Res 33:1610–1617

    Article  CAS  PubMed  Google Scholar 

  231. Andersen JV, Christensen SK, Westi EW, Diaz-delCastillo M, Tanila H, Schousboe A, Aldana BI, Waagepetersen HS (2021) Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Dis 148:105198

    Article  CAS  PubMed  Google Scholar 

  232. Andersen JV, Christensen SK, Aldana BI, Nissen JD, Tanila H, Waagepetersen HS (2017) Alterations in Cerebral Cortical Glucose and Glutamine Metabolism Precedes Amyloid Plaques in the APPswe/PSEN1dE9 Mouse Model of Alzheimer’s Disease. Neurochem Res 42:1589–1598

    Article  CAS  PubMed  Google Scholar 

  233. El Hage M, Conjard-Duplany A, Baverel G, Martin G (2011) Metabolic fate of a high concentration of glutamine and glutamate in rat brain slices: a ¹³C NMR study. Neurochem Int 58:896–903

    Article  PubMed  Google Scholar 

  234. Westi EW, Jakobsen E, Voss CM, Bak LK, Pinborg L, Aldana BI, Andersen JV (2022) Divergent Cellular Energetics, Glutamate Metabolism, and Mitochondrial Function Between Human and Mouse Cerebral Cortex. Mol Neurobiol. Online ahead of print: https://doi.org/10.1007/s12035-022-03053-5

  235. Hyder F, Rothman DL, Bennett MR (2013) Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc Natl Acad Sci U S A 110:3549–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhauser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen WT, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Diaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Gotz M, Gutierrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Perez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner IB, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24:312–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis 13:319–335

    Article  CAS  PubMed  Google Scholar 

  238. Wilton DK, Stevens B (2020) The contribution of glial cells to Huntington’s disease pathogenesis. Neurobiol Dis 143:104963

    Article  PubMed  PubMed Central  Google Scholar 

  239. Andersen JV, Schousboe A, Verkhratsky A (2022) Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: integration of the glutamate/GABA-glutamine cycle.Prog Neurobiol:102331

  240. Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227

    Article  CAS  PubMed  Google Scholar 

  241. Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F, Arroliga AC, Mullen KD (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 114:188–193

    Article  CAS  PubMed  Google Scholar 

  242. Albrecht J, Jones EA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 170:138–146

    Article  CAS  PubMed  Google Scholar 

  243. Häussinger D, Dhiman RK, Felipo V, Görg B, Jalan R, Kircheis G, Merli M, Montagnese S, Romero-Gomez M, Schnitzler A, Taylor-Robinson SD, Vilstrup H (2022) Hepatic encephalopathy. Nat Rev Dis Primers 8:43

    Article  PubMed  Google Scholar 

  244. McConnell JR, Antonson DL, Ong CS, Chu WK, Fox IJ, Heffron TG, Langnas AN, Shaw BW Jr (1995) Proton spectroscopy of brain glutamine in acute liver failure. Hepatology 22:69–74

    Article  CAS  PubMed  Google Scholar 

  245. Lavoie J, Giguère JF, Layrargues GP, Butterworth RF (1987) Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J Neurochem 49:692–697

    Article  CAS  PubMed  Google Scholar 

  246. Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44:788–794

    Article  CAS  PubMed  Google Scholar 

  247. Norenberg MD, Baker L, Norenberg LO, Blicharska J, Bruce-Gregorios JH, Neary JT (1991) Ammonia-induced astrocyte swelling in primary culture. Neurochem Res 16:833–836

    Article  CAS  PubMed  Google Scholar 

  248. Bessman SP, Bessman AN (1955) The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J Clin Invest 34:622–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. McKhann GM, Tower DB (1961) Ammonia toxicity and cerebral oxidative metabolism. Am J Physiol 200:420–424

    Article  CAS  PubMed  Google Scholar 

  250. Lai JC, Cooper AJ (1986) Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47:1376–1386

    Article  CAS  PubMed  Google Scholar 

  251. Hindfelt B, Siesjö BK (1971) Cerebral effects of acute ammonia intoxication. II. The effect upon energy metabolism. Scand J Clin Lab Invest 28:365–374

    Article  CAS  PubMed  Google Scholar 

  252. Hindfelt B, Plum F, Duffy TE (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest 59:386–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Hertz L, Murthy CR, Lai JC, Fitzpatrick SM, Cooper AJ (1987) Some metabolic effects of ammonia on astrocytes and neurons in primary cultures. Neurochem Pathol 6:97–129

    Article  CAS  PubMed  Google Scholar 

  254. Hertz L, Kala G (2007) Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis 22:199–218

    Article  CAS  PubMed  Google Scholar 

  255. Leke R, Bak LK, Anker M, Melø TM, Sørensen M, Keiding S, Vilstrup H, Ott P, Portela LV, Sonnewald U, Schousboe A, Waagepetersen HS (2011) Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine. Neurotox Res 19:496–510

    Article  CAS  PubMed  Google Scholar 

  256. Sørensen M, Walls AB, Dam G, Bak LK, Andersen JV, Ott P, Vilstrup H, Schousboe A (2022) Low cerebral energy metabolism in hepatic encephalopathy reflects low neuronal energy demand. Role of ammonia-induced increased GABAergic tone. Anal Biochem:114766

  257. Norenberg MD (2003) Oxidative and nitrosative stress in ammonia neurotoxicity. Hepatology 37:245–248

    Article  CAS  PubMed  Google Scholar 

  258. Bai G, Rama Rao KV, Murthy CR, Panickar KS, Jayakumar AR, Norenberg MD (2001) Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J Neurosci Res 66:981–991

    Article  CAS  PubMed  Google Scholar 

  259. Murthy CR, Rama Rao KV, Bai G, Norenberg MD (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 66:282–288

    Article  CAS  PubMed  Google Scholar 

  260. Zoratti M, Szabò I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    Article  PubMed  Google Scholar 

  261. Ziemińska E, Dolińska M, Lazarewicz JW, Albrecht J (2000) Induction of permeability transition and swelling of rat brain mitochondria by glutamine. Neurotoxicology 21:295–300

    PubMed  Google Scholar 

  262. Rama Rao KV, Jayakumar AR, Norenberg MD (2003) Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem Int 43:517–523

    Article  CAS  PubMed  Google Scholar 

  263. Dolińska M, Hilgier W, Albrecht J (1996) Ammonia stimulates glutamine uptake to the cerebral non-synaptic mitochondria of the rat. Neurosci Lett 213:45–48

    Article  PubMed  Google Scholar 

  264. Jayakumar AR, Rama Rao KV, Schousboe A, Norenberg MD (2004) Glutamine-induced free radical production in cultured astrocytes. Glia 46:296–301

    Article  PubMed  Google Scholar 

  265. Cooper AJ (2013) Possible treatment of end-stage hyperammonemic encephalopathy by inhibition of glutamine synthetase. Metab Brain Dis 28:119–125

    Article  CAS  PubMed  Google Scholar 

  266. Warren KS, Schenker S (1964) EFFECT OF AN INHIBITOR OF GLUTAMINE SYNTHESIS (METHIONINE SULFOXIMINE) ON AMMONIA TOXICITY AND METABOLISM. J Lab Clin Med 64:442–449

    CAS  PubMed  Google Scholar 

  267. Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1991) Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 261:H825–829

    CAS  PubMed  Google Scholar 

  268. Willard-Mack CL, Koehler RC, Hirata T, Cork LC, Takahashi H, Traystman RJ, Brusilow SW (1996) Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71:589–599

    Article  CAS  PubMed  Google Scholar 

  269. Dadsetan S, Bak LK, Sørensen M, Keiding S, Vilstrup H, Ott P, Leke R, Schousboe A, Waagepetersen HS (2011) Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons. Neurochem Int 59:482–488

    Article  CAS  PubMed  Google Scholar 

  270. Dadsetan S, Kukolj E, Bak LK, Sørensen M, Ott P, Vilstrup H, Schousboe A, Keiding S, Waagepetersen HS (2013) Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures. J Cereb Blood Flow Metab 33:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Fries AW, Dadsetan S, Keiding S, Bak LK, Schousboe A, Waagepetersen HS, Simonsen M, Ott P, Vilstrup H, Sørensen M (2014) Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats. J Cereb Blood Flow Metab 34:460–466

    Article  CAS  PubMed  Google Scholar 

  272. Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, Perucca P (2018) Epilepsy. Nat Rev Dis Primers 4:18024

    Article  PubMed  Google Scholar 

  273. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57:226–235

    Article  CAS  PubMed  Google Scholar 

  274. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  CAS  PubMed  Google Scholar 

  275. Wilson CL, Maidment NT, Shomer MH, Behnke EJ, Ackerson L, Fried I, Engel J Jr (1996) Comparison of seizure related amino acid release in human epileptic hippocampus versus a chronic, kainate rat model of hippocampal epilepsy. Epilepsy Res 26:245–254

    Article  PubMed  Google Scholar 

  276. Eid T, Gruenbaum SE, Dhaher R, Lee TW, Zhou Y, Danbolt NC (2016) The Glutamate-Glutamine Cycle in Epilepsy. Adv Neurobiol 13:351–400

    Article  PubMed  Google Scholar 

  277. Eid T, Lee TW, Patrylo P, Zaveri HP (2019) Astrocytes and Glutamine Synthetase in Epileptogenesis. J Neurosci Res 97:1345–1362

    Article  CAS  PubMed  Google Scholar 

  278. Mellanby E (1946) Dist and canine hysteria; experimental production by treated flour. Br Med J 2:885–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Gershoff SN, Elvehjem CA (1951) The relative effect of methionine sulfoximine on different animal species. J Nutr 45:451–458

    Article  CAS  PubMed  Google Scholar 

  280. Wang Y, Zaveri HP, Lee TS, Eid T (2009) The development of recurrent seizures after continuous intrahippocampal infusion of methionine sulfoximine in rats: a video-intracranial electroencephalographic study. Exp Neurol 220:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Farina MG, Sandhu MRS, Parent M, Sanganahalli BG, Derbin M, Dhaher R, Wang H, Zaveri HP, Zhou Y, Danbolt NC, Hyder F, Eid T (2021) Small loci of astroglial glutamine synthetase deficiency in the postnatal brain cause epileptic seizures and impaired functional connectivity. Epilepsia 62:2858–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Spodenkiewicz M, Diez-Fernandez C, Rüfenacht V, Gemperle-Britschgi C, Häberle J (2016) Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis. Biology (Basel) 5

  283. van Gassen KL, van der Hel WS, Hakvoort TB, Lamers WH, de Graan PN (2009) Haploinsufficiency of glutamine synthetase increases susceptibility to experimental febrile seizures. Genes Brain Behav 8:290–295

    Article  PubMed  Google Scholar 

  284. Marafi D, Fatih JM, Kaiyrzhanov R, Ferla MP, Gijavanekar C, Al-Maraghi A, Liu N, Sites E, Alsaif HS, Al-Owain M, Zakkariah M, El-Anany E, Guliyeva U, Guliyeva S, Gaba C, Haseeb A, Alhashem AM, Danish E, Karageorgou V, Beetz C, Subhi AA, Mullegama SV, Torti E, Sebastin M, Breilyn MS, Duberstein S, Abdel-Hamid MS, Mitani T, Du H, Rosenfeld JA, Jhangiani SN, Coban Akdemir Z, Gibbs RA, Taylor JC, Fakhro KA, Hunter JV, Pehlivan D, Zaki MS, Gleeson JG, Maroofian R, Houlden H, Posey JE, Sutton VR, Alkuraya FS, Elsea SH, Lupski JR (2021) Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy. Brain 3:909–924

  285. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710

    Article  CAS  PubMed  Google Scholar 

  286. Eid T, Thomas MJ, Spencer DD, Rundén-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37

    Article  CAS  PubMed  Google Scholar 

  287. van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen CW, de Graan PN (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64:326–333

    Article  PubMed  Google Scholar 

  288. Papageorgiou IE, Valous NA, Lahrmann B, Janova H, Klaft ZJ, Koch A, Schneider UC, Vajkoczy P, Heppner FL, Grabe N, Halama N, Heinemann U, Kann O (2018) Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus. Glia 66:920–933

    Article  PubMed  Google Scholar 

  289. Steffens M, Huppertz HJ, Zentner J, Chauzit E, Feuerstein TJ (2005) Unchanged glutamine synthetase activity and increased NMDA receptor density in epileptic human neocortex: implications for the pathophysiology of epilepsy. Neurochem Int 47:379–384

    Article  CAS  PubMed  Google Scholar 

  290. Kanamori K, Ross BD (2011) Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain. Brain Res 1371:180–191

    Article  CAS  PubMed  Google Scholar 

  291. Chan F, Lax NZ, Voss CM, Aldana BI, Whyte S, Jenkins A, Nicholson C, Nichols S, Tilley E, Powell Z, Waagepetersen HS, Davies CH, Turnbull DM, Cunningham MO (2019) The role of astrocytes in seizure generation: insights from a novel in vitro seizure model based on mitochondrial dysfunction. Brain 142:391–411

    Article  PubMed  PubMed Central  Google Scholar 

  292. Sun HL, Deng DP, Pan XH, Wang CY, Zhang XL, Chen XM, Wang CH, Liu YX, Li SC, Bai XY, Zhu W (2016) A sub-threshold dose of pilocarpine increases glutamine synthetase in reactive astrocytes and enhances the progression of amygdaloid-kindling epilepsy in rats. NeuroReport 27:213–219

    Article  PubMed  Google Scholar 

  293. Seo GY, Neal ES, Han F, Vidovic D, Nooru-Mohamed F, Dienel GA, Sullivan MA, Borges K (2022) Brain glycogen content is increased in the acute and interictal chronic stages of the mouse pilocarpine model of epilepsy. Epilepsia Open 7:361–367

    Article  PubMed  PubMed Central  Google Scholar 

  294. Papageorgiou IE, Gabriel S, Fetani AF, Kann O, Heinemann U (2011) Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats. Glia 59:1706–1718

    Article  PubMed  Google Scholar 

  295. Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, Nelson N, Leite JP, Chimelli L, Born DE, Sakamoto AC, Assirati JA, Fried I, Peacock WJ, Ojemann GA, Adelson PD (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472

    Article  CAS  PubMed  Google Scholar 

  296. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PN (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125:32–43

    Article  CAS  PubMed  Google Scholar 

  297. Bjørnsen LP, Eid T, Holmseth S, Danbolt NC, Spencer DD, de Lanerolle NC (2007) Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol Dis 25:319–330

    Article  PubMed  Google Scholar 

  298. Eid T, Hammer J, Rundén-Pran E, Roberg B, Thomas MJ, Osen K, Davanger S, Laake P, Torgner IA, Lee TS, Kim JH, Spencer DD, Ottersen OP, de Lanerolle NC (2007) Increased expression of phosphate-activated glutaminase in hippocampal neurons in human mesial temporal lobe epilepsy. Acta Neuropathol 113:137–152

    Article  CAS  PubMed  Google Scholar 

  299. Malthankar-Phatak GH, de Lanerolle N, Eid T, Spencer DD, Behar KL, Spencer SS, Kim JH, Lai JC (2006) Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy. Epilepsia 47:1292–1299

    Article  CAS  PubMed  Google Scholar 

  300. Dutuit M, Didier-Bazès M, Vergnes M, Mutin M, Conjard A, Akaoka H, Belin MF, Touret M (2000) Specific alteration in the expression of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine synthetase in rats with genetic absence epilepsy. Glia 32:15–24

    Article  CAS  PubMed  Google Scholar 

  301. Dhaher R, Chen EC, Perez E, Rapuano A, Sandhu MRS, Gruenbaum SE, Deshpande K, Dai F, Zaveri HP, Eid T (2022) Oral glutamine supplementation increases seizure severity in a rodent model of mesial temporal lobe epilepsy. Nutr Neurosci 25:64–69

    Article  CAS  PubMed  Google Scholar 

  302. Tani H, Dulla CG, Huguenard JR, Reimer RJ (2010) Glutamine is required for persistent epileptiform activity in the disinhibited neocortical brain slice. J Neurosci 30:1288–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Andersen JV, Westi EW, Jakobsen E, Urruticoechea N, Borges K, Aldana BI (2021) Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol Brain 14:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Borges K, Kaul N, Germaine J, Kwan P, O’Brien TJ (2019) Randomized trial of add-on triheptanoin vs medium chain triglycerides in adults with refractory epilepsy. Epilepsia Open 4:153–163

    Article  PubMed  PubMed Central  Google Scholar 

  305. Han FY, Conboy-Schmidt L, Rybachuk G, Volk HA, Zanghi B, Pan Y, Borges K (2021) Dietary medium chain triglycerides for management of epilepsy: New data from human, dog, and rodent studies. Epilepsia 62:1790–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Rho JM, Boison D (2022) The metabolic basis of epilepsy. Nat Rev Neurol 6:333–347

  307. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056

    Article  PubMed  Google Scholar 

  308. Scheltens P, Blennow K, Breteler MMB, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. The Lancet 388:505–517

    Article  CAS  Google Scholar 

  309. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  CAS  PubMed  Google Scholar 

  310. De Strooper B, Karran E (2016) The Cellular Phase of Alzheimer’s Disease. Cell 164:603–615

    Article  PubMed  Google Scholar 

  311. Jadiya P, Garbincius JF, Elrod JW (2021) Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 9:124

    Article  PubMed  PubMed Central  Google Scholar 

  312. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20:148–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. van der Lee SJ, Teunissen CE, Pool R, Shipley MJ, Teumer A, Chouraki V, Melo van Lent D, Tynkkynen J, Fischer K, Hernesniemi J, Haller T, Singh-Manoux A, Verhoeven A, Willemsen G, de Leeuw FA, Wagner H, van Dongen J, Hertel J, Budde K, van Willems K, Weinhold L, Ikram MA, Pietzner M, Perola M, Wagner M, Friedrich N, Slagboom PE, Scheltens P, Yang Q, Gertzen RE, Egert S, Li S, Hankemeier T, van Beijsterveldt CEM, Vasan RS, Maier W, Peeters CFW, Grabe H, Ramirez A, Seshadri S, Metspalu A, Kivimäki M, Salomaa V, Demirkan A, Boomsma DI, van der Flier WM, Amin N, van Duijn CM (2018) Circulating metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies. Alzheimers Dement 14:707–722

  315. Huang SY, Yang YX, Zhang YR, Kuo K, Li HQ, Shen XN, Chen SD, Chen KL, Dong Q, Tan L, Yu JT (2022) Investigating Causal Relations Between Circulating Metabolites and Alzheimer’s Disease: A Mendelian Randomization Study. J Alzheimers Dis 87:463–477

    Article  CAS  PubMed  Google Scholar 

  316. Gunnersen D, Haley B (1992) Detection of glutamine synthetase in the cerebrospinal fluid of Alzheimer diseased patients: a potential diagnostic biochemical marker. Proc Natl Acad Sci U S A 89:11949–11953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Tumani H, Shen G, Peter JB, Brück W (1999) Glutamine synthetase in cerebrospinal fluid, serum, and brain: a diagnostic marker for Alzheimer disease? Arch Neurol 56:1241–1246

    Article  CAS  PubMed  Google Scholar 

  318. Vermeiren Y, Le Bastard N, Clark CM, Engelborghs S, De Deyn PP (2011) Serum glutamine synthetase has no value as a diagnostic biomarker for Alzheimer’s disease. Neurochem Res 36:1858–1862

    Article  CAS  PubMed  Google Scholar 

  319. Timmer NM, Herbert MK, Claassen JA, Kuiperij HB, Verbeek MM (2015) Total glutamine synthetase levels in cerebrospinal fluid of Alzheimer’s disease patients are unchanged. Neurobiol Aging 36:1271–1273

    Article  CAS  PubMed  Google Scholar 

  320. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A 88:10540–10543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156

    Article  CAS  PubMed  Google Scholar 

  322. Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22:223–232

    Article  CAS  PubMed  Google Scholar 

  323. Fan S, Xian X, Li L, Yao X, Hu Y, Zhang M, Li W (2018) Ceftriaxone Improves Cognitive Function and Upregulates GLT-1-Related Glutamate-Glutamine Cycle in APP/PS1 Mice. J Alzheimers Dis 66:1731–1743

    Article  CAS  PubMed  Google Scholar 

  324. Fan S, Li L, Xian X, Liu L, Gao J, Li W (2021) Ceftriaxone regulates glutamate production and vesicular assembly in presynaptic terminals through GLT-1 in APP/PS1 mice. Neurobiol Learn Mem 183:107480

    Article  CAS  PubMed  Google Scholar 

  325. Aksenov MY, Aksenova MV, Carney JM, Butterfield DA (1997) Oxidative modification of glutamine synthetase by amyloid beta peptide. Free Radic Res 27:267–281

    Article  CAS  PubMed  Google Scholar 

  326. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A 91:3270–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Harris ME, Hensley K, Butterfield DA, Leedle RA, Carney JM (1995) Direct evidence of oxidative injury produced by the Alzheimer’s beta-amyloid peptide (1–40) in cultured hippocampal neurons. Exp Neurol 131:193–202

    Article  CAS  PubMed  Google Scholar 

  328. Sultana R, Perluigi M, Butterfield DA (2009) Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 118:131–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Le Prince G, Delaere P, Fages C, Lefrançois T, Touret M, Salanon M, Tardy M (1995) Glutamine synthetase (GS) expression is reduced in senile dementia of the Alzheimer type. Neurochem Res 20:859–862

    Article  PubMed  Google Scholar 

  330. Jones VC, Atkinson-Dell R, Verkhratsky A, Mohamet L (2017) Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis 8:e2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ (2011) Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener 6:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Kulijewicz-Nawrot M, Sykova E, Chvatal A, Verkhratsky A, Rodriguez JJ (2013) Astrocytes and glutamate homoeostasis in Alzheimer’s disease: a decrease in glutamine synthetase, but not in glutamate transporter-1, in the prefrontal cortex. ASN Neuro 5:273–282

    Article  CAS  PubMed  Google Scholar 

  333. Andersen JV, Skotte NH, Christensen SK, Polli FS, Shabani M, Markussen KH, Haukedal H, Westi EW, Diaz-delCastillo M, Sun RC, Kohlmeier KA, Schousboe A, Gentry MS, Tanila H, Freude KK, Aldana BI, Mann M, Waagepetersen HS (2021) Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease. Cell Death Dis 12:954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Akiyama H, McGeer PL, Itagaki S, McGeer EG, Kaneko T (1989) Loss of glutaminase-positive cortical neurons in Alzheimer’s disease. Neurochem Res 14:353–358

    Article  CAS  PubMed  Google Scholar 

  335. Mahajan UV, Varma VR, Griswold ME, Blackshear CT, An Y, Oommen AM, Varma S, Troncoso JC, Pletnikova O, O’Brien R, Hohman TJ, Legido-Quigley C, Thambisetty M (2020) Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study. PLoS Med 17:e1003012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Procter AW, Lowe SL, Palmer AM, Francis PT, Esiri MM, Stratmann GC, Najlerahim A, Patel AJ, Hunt A, Bowen DM (1988) Topographical distribution of neurochemical changes in Alzheimer’s disease. J Neurol Sci 84:125–140

    Article  CAS  PubMed  Google Scholar 

  337. Buntup D, Skare O, Solbu TT, Chaudhry FA, Storm-Mathisen J, Thangnipon W (2008) Beta-amyloid 25–35 peptide reduces the expression of glutamine transporter SAT1 in cultured cortical neurons. Neurochem Res 33:248–256

    Article  CAS  PubMed  Google Scholar 

  338. Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40:759–766

    Article  CAS  PubMed  Google Scholar 

  339. Abdul HM, Sama MA, Furman JL, Mathis DM, Beckett TL, Weidner AM, Patel ES, Baig I, Murphy MP, LeVine H 3, Kraner SD, Norris CM (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 29:12957–12969

    Article  PubMed  PubMed Central  Google Scholar 

  340. Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, Ravid R, Roggendorf W, Riederer P, Grünblatt E (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11:97–116

    Article  CAS  PubMed  Google Scholar 

  341. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  CAS  PubMed  Google Scholar 

  342. Bröer A, Deitmer JW, Bröer S (2004) Astroglial glutamine transport by system N is upregulated by glutamate. Glia 48:298–310

    Article  PubMed  Google Scholar 

  343. Seiler N (1993) Is ammonia a pathogenetic factor in Alzheimer’s disease? Neurochem Res 18:235–245

    Article  CAS  PubMed  Google Scholar 

  344. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ (2015) Huntington disease. Nat Rev Dis Primers 1:15005

    Article  PubMed  Google Scholar 

  345. Group THsDCR (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group Cell 72:971–983

    Google Scholar 

  346. Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R (2017) Unravelling and Exploiting Astrocyte Dysfunction in Huntington’s Disease. Trends Neurosci 40:422–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A 106:22480–22485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Benraiss A, Wang S, Herrlinger S, Li X, Chandler-Militello D, Mauceri J, Burm HB, Toner M, Osipovitch M, Jim Xu Q, Ding F, Wang F, Kang N, Kang J, Curtin PC, Brunner D, Windrem MS, Munoz-Sanjuan I, Nedergaard M, Goldman SA (2016) Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun 7:11758

    Article  PubMed  PubMed Central  Google Scholar 

  349. Diaz-Castro B, Gangwani MR, Yu X, Coppola G, Khakh BS (2019) Astrocyte molecular signatures in Huntington’s disease. Sci Transl Med 11:514

  350. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I, Olsen ML, Sofroniew MV, Khakh BS (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17:694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Déglon N, Ferrante RJ, Bonvento G (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19:3053–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Liévens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, Bates GP (2001) Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis 8:807–821

    Article  PubMed  Google Scholar 

  353. Skotte NH, Andersen JV, Santos A, Aldana BI, Willert CW, Norremolle A, Waagepetersen HS, Nielsen ML (2018) Integrative Characterization of the R6/2 Mouse Model of Huntington’s Disease Reveals Dysfunctional Astrocyte Metabolism. Cell Rep 23:2211–2224

    Article  CAS  PubMed  Google Scholar 

  354. Polyzos AA, Lee DY, Datta R, Hauser M, Budworth H, Holt A, Mihalik S, Goldschmidt P, Frankel K, Trego K, Bennett MJ, Vockley J, Xu K, Gratton E, McMurray CT (2019) Metabolic Reprogramming in Astrocytes Distinguishes Region-Specific Neuronal Susceptibility in Huntington Mice. Cell Metab 29:1258–1273e1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45:25–32

    Article  CAS  PubMed  Google Scholar 

  356. Jenkins BG, Klivenyi P, Kustermann E, Andreassen OA, Ferrante RJ, Rosen BR, Beal MF (2000) Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice. J Neurochem 74:2108–2119

    Article  CAS  PubMed  Google Scholar 

  357. Taylor-Robinson SD, Weeks RA, Sargentoni J, Marcus CD, Bryant DJ, Harding AE, Brooks DJ (1994) Evidence for glutamate excitotoxicity in Huntington’s disease with proton magnetic resonance spectroscopy. Lancet 343:1170

    Article  CAS  PubMed  Google Scholar 

  358. Tsang TM, Woodman B, McLoughlin GA, Griffin JL, Tabrizi SJ, Bates GP, Holmes E (2006) Metabolic characterization of the R6/2 transgenic mouse model of Huntington’s disease by high-resolution MAS 1H NMR spectroscopy. J Proteome Res 5:483–492

    Article  CAS  PubMed  Google Scholar 

  359. Andersen JV, Skotte NH, Aldana BI, Norremolle A, Waagepetersen HS (2019) Enhanced cerebral branched-chain amino acid metabolism in R6/2 mouse model of Huntington’s disease. Cell Mol Life Sci 76:2449–2461

    Article  CAS  PubMed  Google Scholar 

  360. Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125:1908–1922

    Article  CAS  PubMed  Google Scholar 

  361. Tkac I, Dubinsky JM, Keene CD, Gruetter R, Low WC (2007) Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy. J Neurochem 100:1397–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Zacharoff L, Tkac I, Song Q, Tang C, Bolan PJ, Mangia S, Henry PG, Li T, Dubinsky JM (2012) Cortical metabolites as biomarkers in the R6/2 model of Huntington’s disease. J Cereb Blood Flow Metab 32:502–514

    Article  CAS  PubMed  Google Scholar 

  363. Pépin J, Francelle L, Carrillo-de Sauvage MA, de Longprez L, Gipchtein P, Cambon K, Valette J, Brouillet E, Flament J (2016) In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington’s disease. NeuroImage 139:53–64

    Article  PubMed  Google Scholar 

  364. Heikkinen T, Lehtimäki K, Vartiainen N, Puoliväli J, Hendricks SJ, Glaser JR, Bradaia A, Wadel K, Touller C, Kontkanen O, Yrjänheikki JM, Buisson B, Howland D, Beaumont V, Munoz-Sanjuan I, Park LC (2012) Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS ONE 7:e50717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Peng Q, Wu B, Jiang M, Jin J, Hou Z, Zheng J, Zhang J, Duan W (2016) Characterization of Behavioral, Neuropathological, Brain Metabolic and Key Molecular Changes in zQ175 Knock-In Mouse Model of Huntington’s Disease. PLoS ONE 11:e0148839

    Article  PubMed  PubMed Central  Google Scholar 

  366. Carter CJ (1981) Loss of glutamine synthetase activity in the brain in Huntington’s disease. Lancet 1:782–783

    Article  CAS  PubMed  Google Scholar 

  367. Carter CJ (1982) Glutamine synthetase activity in Huntington’s disease. Life Sci 31:1151–1159

    Article  CAS  PubMed  Google Scholar 

  368. Carter CJ (1983) Glutamine synthetase and fructose-1, 6-diphosphatase activity in the putamen of control and Huntington’s disease brain post mortem. Life Sci 32:1949–1955

    Article  CAS  PubMed  Google Scholar 

  369. Boussicault L, Herard AS, Calingasan N, Petit F, Malgorn C, Merienne N, Jan C, Gaillard MC, Lerchundi R, Barros LF, Escartin C, Delzescaux T, Mariani J, Hantraye P, Beal MF, Brouillet E, Vega C, Bonvento G (2014) Impaired brain energy metabolism in the BACHD mouse model of Huntington’s disease: critical role of astrocyte-neuron interactions. J Cereb Blood Flow Metab 34:1500–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Hosp F, Gutiérrez-Ángel S, Schaefer MH, Cox J, Meissner F, Hipp MS, Hartl FU, Klein R, Dudanova I, Mann M (2017) Spatiotemporal Proteomic Profiling of Huntington’s Disease Inclusions Reveals Widespread Loss of Protein Function. Cell Rep 21:2291–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Meunier C, Merienne N, Jollé C, Déglon N, Pellerin L (2016) Astrocytes are key but indirect contributors to the development of the symptomatology and pathophysiology of Huntington’s disease. Glia 64:1841–1856

    Article  PubMed  Google Scholar 

  372. Zabel C, Mao L, Woodman B, Rohe M, Wacker MA, Klare Y, Koppelstatter A, Nebrich G, Klein O, Grams S, Strand A, Luthi-Carter R, Hartl D, Klose J, Bates GP (2009) A large number of protein expression changes occur early in life and precede phenotype onset in a mouse model for huntington disease. Mol Cell Proteomics 8:720–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Labadorf A, Hoss AG, Lagomarsino V, Latourelle JC, Hadzi TC, Bregu J, MacDonald ME, Gusella JF, Chen JF, Akbarian S, Weng Z, Myers RH (2015) RNA Sequence Analysis of Human Huntington Disease Brain Reveals an Extensive Increase in Inflammatory and Developmental Gene Expression. PLoS ONE 10:e0143563

    Article  PubMed  PubMed Central  Google Scholar 

  374. Al-Dalahmah O, Sosunov AA, Shaik A, Ofori K, Liu Y, Vonsattel JP, Adorjan I, Menon V, Goldman JE (2020) Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun 8:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Butterworth J, Yates CM, Simpson J (1983) Phosphate-activated glutaminase in relation to Huntington’s disease and agonal state. J Neurochem 41:440–447

    Article  CAS  PubMed  Google Scholar 

  376. Butterworth J, Yates CM, Reynolds GP (1985) Distribution of phosphate-activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and gamma-glutamyl transpeptidase in post-mortem brain from Huntington’s disease and agonal cases. J Neurol Sci 67:161–171

    Article  CAS  PubMed  Google Scholar 

  377. Chiang MC, Chen HM, Lee YH, Chang HH, Wu YC, Soong BW, Chen CM, Wu YR, Liu CS, Niu DM, Wu JY, Chen YT, Chern Y (2007) Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington’s disease. Hum Mol Genet 16:483–498

    Article  CAS  PubMed  Google Scholar 

  378. Patassini S, Begley P, Reid SJ, Xu J, Church SJ, Curtis M, Dragunow M, Waldvogel HJ, Unwin RD, Snell RG, Faull RL, Cooper GJ (2015) Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington’s disease. Biochem Biophys Res Commun 468:161–166

    Article  CAS  PubMed  Google Scholar 

  379. Skene DJ, Middleton B, Fraser CK, Pennings JL, Kuchel TR, Rudiger SR, Bawden CS, Morton AJ (2017) Metabolic profiling of presymptomatic Huntington’s disease sheep reveals novel biomarkers. Sci Rep 7:43030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Handley RR, Reid SJ, Brauning R, Maclean P, Mears ER, Fourie I, Patassini S, Cooper GJS, Rudiger SR, McLaughlan CJ, Verma PJ, Gusella JF, MacDonald ME, Waldvogel HJ, Bawden CS, Faull RLM, Snell RG (2017) Brain urea increase is an early Huntington’s disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proc Natl Acad Sci U S A 114:E11293–e11302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Chen CM, Lin YS, Wu YR, Chen P, Tsai FJ, Yang CL, Tsao YT, Chang W, Hsieh IS, Chern Y, Soong BW (2015) High Protein Diet and Huntington’s Disease. PLoS ONE 10:e0127654

    Article  PubMed  PubMed Central  Google Scholar 

  382. Hardiman O, van den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7:639–649

    Article  CAS  PubMed  Google Scholar 

  383. Al-Chalabi A, van den Berg LH, Veldink J (2017) Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13:96–104

    Article  CAS  PubMed  Google Scholar 

  384. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  385. Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP et al (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261:1047–1051

    Article  CAS  PubMed  Google Scholar 

  386. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H, Cleveland DW (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, Song S, Likhite S, Murtha MJ, Foust KD, Rao M, Eagle A, Kammesheidt A, Christensen A, Mendell JR, Burghes AH, Kaspar BK (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29:824–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, Ladner KJ, Bevan AK, Foust KD, Godbout JP, Popovich PG, Guttridge DC, Kaspar BK (2014) Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81:1009–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Philips T, Bento-Abreu A, Nonneman A, Haeck W, Staats K, Geelen V, Hersmus N, Küsters B, Van Den Bosch L, Van Damme P, Richardson WD, Robberecht W (2013) Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain 136:471–482

    Article  PubMed  PubMed Central  Google Scholar 

  391. Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J, Shaw PJ (2011) Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 134:2627–2641

    Article  PubMed  PubMed Central  Google Scholar 

  392. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Tefera TW, Borges K (2019) Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Cereb Blood Flow Metab 39:1710–1724

    Article  CAS  PubMed  Google Scholar 

  394. Roy D, Puvvada M, Kapanaiah SKT, Patel AB (2022) Enhanced Cortical Metabolic Activity in Females and Males of a Slow Progressing Mouse Model of Amyotrophic Lateral Sclerosis. Neurochem Res 47:1765–1777

    Article  CAS  PubMed  Google Scholar 

  395. Valbuena GN, Tortarolo M, Bendotti C, Cantoni L, Keun HC (2017) Altered Metabolic Profiles Associate with Toxicity in SOD1(G93A) Astrocyte-Neuron Co-Cultures. Sci Rep 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  396. Fray AE, Dempster S, Williams RE, Cookson MR, Shaw PJ (2001) Glutamine synthetase activity and expression are not affected by the development of motor neuronopathy in the G93A SOD-1/ALS mouse. Brain Res Mol Brain Res 94:131–136

    Article  CAS  PubMed  Google Scholar 

  397. Crochemore C, Peña-Altamira E, Virgili M, Monti B, Contestabile A (2005) Disease-related regressive alterations of forebrain cholinergic system in SOD1 mutant transgenic mice. Neurochem Int 46:357–368

    Article  CAS  PubMed  Google Scholar 

  398. D’Alessandro G, Calcagno E, Tartari S, Rizzardini M, Invernizzi RW, Cantoni L (2011) Glutamate and glutathione interplay in a motor neuronal model of amyotrophic lateral sclerosis reveals altered energy metabolism. Neurobiol Dis 43:346–355

    Article  PubMed  Google Scholar 

  399. Valbuena GN, Rizzardini M, Cimini S, Siskos AP, Bendotti C, Cantoni L, Keun HC (2016) Metabolomic Analysis Reveals Increased Aerobic Glycolysis and Amino Acid Deficit in a Cellular Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 53:2222–2240

    Article  CAS  PubMed  Google Scholar 

  400. Niessen HG, Debska-Vielhaber G, Sander K, Angenstein F, Ludolph AC, Hilfert L, Willker W, Leibfritz D, Heinze HJ, Kunz WS, Vielhaber S (2007) Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 25:1669–1677

    Article  PubMed  Google Scholar 

  401. Perry TL, Hansen S, Jones K (1987) Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology 37:1845–1848

    Article  CAS  PubMed  Google Scholar 

  402. Tsai GC, Stauch-Slusher B, Sim L, Hedreen JC, Rothstein JD, Kuncl R, Coyle JT (1991) Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Res 556:151–156

    Article  CAS  PubMed  Google Scholar 

  403. Plaitakis A, Constantakakis E, Smith J (1988) The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol 24:446–449

    Article  CAS  PubMed  Google Scholar 

  404. Malessa S, Leigh PN, Bertel O, Sluga E, Hornykiewicz O (1991) Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord. J Neurol Neurosurg Psychiatry 54:984–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Plaitakis A, Constantakakis E (1993) Altered metabolism of excitatory amino acids, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate in amyotrophic lateral sclerosis. Brain Res Bull 30:381–386

    Article  CAS  PubMed  Google Scholar 

  406. Ono S, Imai T, Takahashi K, Jinnai K, Kanda F, Fukuoka Y, Hashimoto K, Shimizu N, Nagao K (1999) Alteration in amino acids in motor neurons of the spinal cord in amyotrophic lateral sclerosis. J Neurol Sci 167:121–126

    Article  CAS  PubMed  Google Scholar 

  407. Guiloff RJ, Emami JM, During MJ, Freese A, Plaitakis A, Mandeli J, Smith J, Yahr MD, Shashidharan P, Malessa S, Leigh N, Hornykiewicz O (1988) Branched-chain aminoacids in amyotrophic lateral sclerosis. Lancet 2:680–682

    Article  Google Scholar 

  408. Schmitt A, Kugler P (1999) Cellular and regional expression of glutamate dehydrogenase in the rat nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 92:293–308

    Article  CAS  PubMed  Google Scholar 

  409. Bao X, Pal R, Hascup KN, Wang Y, Wang WT, Xu W, Hui D, Agbas A, Wang X, Michaelis ML, Choi IY, Belousov AB, Gerhardt GA, Michaelis EK (2009) Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 29:13929–13944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Michaelis EK, Wang X, Pal R, Bao X, Hascup KN, Wang Y, Wang WT, Hui D, Agbas A, Choi IY, Belousov A, Gerhardt GA (2011) Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Neurochem Int 59:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Nissen JD, Lykke K, Bryk J, Stridh MH, Zaganas I, Skytt DM, Schousboe A, Bak LK, Enard W, Paabo S, Waagepetersen HS (2017) Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes. Glia 65:474–488

    Article  PubMed  Google Scholar 

  412. Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50:169–180

    Article  CAS  PubMed  Google Scholar 

  413. Ghoddoussi F, Galloway MP, Jambekar A, Bame M, Needleman R, Brusilow WS (2010) Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and glutamate in a mouse model of ALS. J Neurol Sci 290:41–47

    Article  CAS  PubMed  Google Scholar 

  414. Bame M, Pentiak PA, Needleman R, Brusilow WS (2012) Effect of sex on lifespan, disease progression, and the response to methionine sulfoximine in the SOD1 G93A mouse model for ALS. Gend Med 9:524–535

    Article  PubMed  Google Scholar 

  415. Brusilow WS (2017) Identification of the isomer of methionine sulfoximine that extends the lifespan of the SOD1 G93A mouse. Neurosci Lett 647:165–167

    Article  CAS  PubMed  Google Scholar 

  416. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, Vistnes S, Stockley JH, Young A, Steindel M, Tung B, Goyal N, Bhaduri A, Mayer S, Engler JB, Bayraktar OA, Franklin RJM, Haeussler M, Reynolds R, Schafer DP, Friese MA, Shiow LR, Kriegstein AR, Rowitch DH (2019) Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  417. Ferraiuolo L, Meyer K, Sherwood TW, Vick J, Likhite S, Frakes A, Miranda CJ, Braun L, Heath PR, Pineda R, Beattie CE, Shaw PJ, Askwith CC, McTigue D, Kaspar BK (2016) Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc Natl Acad Sci U S A 113:E6496–e6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Vucic S, Nicholson GA, Kiernan MC (2008) Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131:1540–1550

    Article  PubMed  Google Scholar 

  419. Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19:609–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Camandola S, Mattson MP (2017) Brain metabolism in health, aging, and neurodegeneration. Embo j 36:1474–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an SSADH Association Fellowship and a grant from the Hørslev Foundation (both awarded to JVA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens V. Andersen or Arne Schousboe.

Ethics declarations

Declaration of Competing Interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, J.V., Schousboe, A. Glial Glutamine Homeostasis in Health and Disease. Neurochem Res 48, 1100–1128 (2023). https://doi.org/10.1007/s11064-022-03771-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03771-1

Keywords

Navigation