Skip to main content

Advertisement

Log in

Detoxification of Ammonia in Mouse Cortical GABAergic Cell Cultures Increases Neuronal Oxidative Metabolism and Reveals an Emerging Role for Release of Glucose-Derived Alanine

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal–astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

GDH:

Glutamate dehydrogenase

GS:

Glutamine synthetase

GSH:

Glutathione

HE:

Hepatic encephalopathy

LC–MS:

Liquid chromatography–mass spectrometry

MCL:

Molecular carbon labeling

NMRS:

Nuclear magnetic resonance spectroscopy

PC:

Pyruvate carboxylase

PDH:

Pyruvate dehydrogenase

TCA:

Tricarboxylic acid

References

  • Ahboucha S, Butterworth RF (2004) Pathophysiology of hepatic encephalopathy: a new look at GABA from the molecular standpoint. Metab Brain Dis 19(3–4):331–343

    Article  CAS  PubMed  Google Scholar 

  • Ahboucha S, Butterworth RF (2008) The neurosteroid system: implication in the pathophysiology of hepatic encephalopathy. Neurochem Int 52(4):575–587

    Article  CAS  PubMed  Google Scholar 

  • Albrecht J, Jones EA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 170(2):138–146

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Sickmann HM, Schousboe A, Waagepetersen HS (2005) Activity of the lactate-alanine shuttle is independent of glutamate–glutamine cycle activity in cerebellar neuronal-astrocytic cultures. J Neurosci Res 79(1–2):88–96

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 26(10):1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Iversen P, Sørensen M, Keiding S, Vilstrup H, Ott P, Waagepetersen HS, Schousboe A (2009) Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia. Metab Brain Dis 24(1):135–145

    Article  CAS  PubMed  Google Scholar 

  • Basile AS (2002) Direct and indirect enhancement of GABAergic neurotransmission by ammonia: implications for the pathogenesis of hyperammonemic syndromes. Neurochem Int 41(2–3):115–122

    Google Scholar 

  • Berl S, Takagari G, Clarke DD, Waelsch H (1962) Metabolic compartments in vivo ammonia and glutamic acid metabolism in brain and liver. J Biol Chem 237:2562–2599

    CAS  PubMed  Google Scholar 

  • Bessman SP, Bessman AN (1955) The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J Clin Invest 34(4):622–628

    Article  CAS  PubMed  Google Scholar 

  • Biemann K (1962) Mass spectrometry. In: Organic chemistry applications. McGraw, New York, pp 223–227

  • Blei AT, Córdoba J (2001) Encephalopathy. Practice Parameters Committee of the American College of Gastroenterology. Am J Gastroenterol 96(7):1968–1976

    Article  CAS  PubMed  Google Scholar 

  • Bosman DK, Deutz NE, De Graaf AA, vd Hulst RW, Van Eijk HM, Bovée WM, Maas MA, Jörning GG, Chamuleau RA (1990) Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatology 12(2):281–290

    Article  CAS  PubMed  Google Scholar 

  • Brusilow SW, Traystman R (1986) Hepatic encephalopathy. N Engl J Med 314(12):786–787

    CAS  PubMed  Google Scholar 

  • Butterworth RF (2000) Hepatic encephalopathy: a neuropsychiatric disorder involving multiple neurotransmitter systems. Curr Opin Neurol 13(6):721–727

    Article  CAS  PubMed  Google Scholar 

  • Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17(4):221–227

    Article  CAS  PubMed  Google Scholar 

  • Cauli O, Mansouri MT, Agusti A, Felipo V (2009) Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 136(4):1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Cesar M, Hamprecht B (1995) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J Neurochem 64(5):2312–2318

    Article  CAS  PubMed  Google Scholar 

  • Chatauret N, Rose C, Therrien G, Butterworth RF (2001) Mild hypothermia prevents cerebral edema and CSF lactate accumulation in acute liver failure. Metab Brain Dis 16(1–2):95–102

    Article  CAS  PubMed  Google Scholar 

  • Chatauret N, Zwingmann C, Rose C, Leibfritz D, Butterworth RF (2003) Effects of hypothermia on brain glucose metabolism in acute liver failure: a H/C-nuclear magnetic resonance study. Gastroenterology 125(3):815–824

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67(2):440–519

    CAS  PubMed  Google Scholar 

  • Cooper AJ (2001) Role of glutamine in cerebral nitrogen metabolism and ammonia neurotoxicity. Ment Retard Dev Disabil Res Rev 7(4):280–286

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJ, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE (1979) The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem 254(12):4982–4992

    CAS  PubMed  Google Scholar 

  • Cooper AJ, Mora SN, Cruz NF, Gelbard AS (1985) Cerebral ammonia metabolism in hyperammonemic rats. J Neurochem 44(6):1716–1723

    Article  CAS  PubMed  Google Scholar 

  • Cruz NF, Lasater A, Zielke HR, Dienel GR (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92(4):934–947

    Article  CAS  PubMed  Google Scholar 

  • Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69(6):2612–2615

    Article  CAS  PubMed  Google Scholar 

  • Haghighat N, McCandless DW (1997) Effect of ammonium chloride on energy metabolism of astrocytes and C6-glioma cells in vitro. Metab Brain Dis 12(4):287–298

    CAS  PubMed  Google Scholar 

  • Hassel B, Sonnewald U, Fonnum F (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2–13C]acetate and [1–13C]glucose: an ex vivo 13C NMR spectroscopic study. J Neurochem 64(6):2773–2782

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Viña JR (2006) Structure of the blood–brain barrier and its role in the transport of amino acids. J Nutr 136(Suppl 1):218S–226S

    CAS  PubMed  Google Scholar 

  • Hazell AS, Butterworth RF (1999) Hepatic encephalopathy: an update of pathophysiologic mechanisms. Proc Soc Exp Biol Med 222(2):99–112

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Kala G (2007) Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis 22(3–4):199–218

    Article  CAS  PubMed  Google Scholar 

  • Hertz L, Juurlink BHJ, Fosmark H, Schousboe A (1982) Astrocytes in primary cultures. In: Pfeiffer SE (ed) Neuroscience approached through cell culture, vol 1. CRC Press, Boca Raton, FL, pp 175–186

    Google Scholar 

  • Hertz E, Yu ACH, Hertz L, Juurlink BHJ, Schousboe A (1989) Preparation of primary cultures of mouse cortical neurons. In: Shahar A, De Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual for the nervous system. Alan R. Liss, New York, pp 183–186

    Google Scholar 

  • Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57(4):417–428

    Article  CAS  PubMed  Google Scholar 

  • Hindfelt B, Plum F, Duffy TE (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest 59(3):386–396

    Article  CAS  PubMed  Google Scholar 

  • Iversen P, Sørensen M, Bak LK, Waagepetersen HS, Vafee MS, Borghammer P, Mouridsen K, Jensen SB, Vilstrup H, Schousboe A, Ott P, Gjedde A, Keiding S (2009) Low cerebral oxygen consumption and blood flow in patients with cirrhosis and an acute episode of hepatic encephalopathy. Gastroenterology 136:863–871

    Article  PubMed  Google Scholar 

  • Jayakumar AR, Rama Rao KV, Schousboe A, Norenberg MD (2004) Glutamine-induced free radical production in cultured astrocytes. Glia 46(3):296–301

    Article  PubMed  Google Scholar 

  • Jayakumar AR, Rao KV, ChR Murthy, Norenberg MD (2006) Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int 48(6–7):623–628

    CAS  PubMed  Google Scholar 

  • Johansen ML, Bak LK, Schousboe A, Iversen P, Sørensen M, Keiding S, Vilstrup H, Gjedde A, Ott P, Waagepetersen HS (2007) The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes. Neurochem Int 50(7–8):1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Jones EA (2003) Potential mechanisms of enhanced GABA-mediated inhibitory neurotransmission in liver failure. Neurochem Int 43(4–5):509–516

    Article  PubMed  Google Scholar 

  • Kala G, Hertz L (2005) Ammonia effects on pyruvate/lactate production in astrocytes-interaction with glutamate. Neurochem Int 47(1–2):4–12

    Article  CAS  PubMed  Google Scholar 

  • Kanamatsu T, Tsukada Y (1999) Effects of ammonia on the anaplerotic pathway and amino acid metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2–13C] glucose with or without ammonium acetate. Brain Res 841(1–2):11–19

    Article  CAS  PubMed  Google Scholar 

  • Kanamori K, Ross BD, Chung JC, Kuo EL (1996) Severity of hyperammonemic encephalopathy correlates with brain ammonia level and saturation of glutamine synthetase in vivo. J Neurochem 67(4):1584–1594

    Article  CAS  PubMed  Google Scholar 

  • Keiding S, Sørensen M, Bender D, Munk OL, Ott P, Vilstrup H (2006) Brain metabolism of 13N-ammonia during acute hepatic encephalopathy in cirrhosis measured by PET. Hepatology 43:42–50 (Correction in Hepatology 2006;44:1056)

    Google Scholar 

  • Kosenko E, Kaminsky Y, Kaminsky A, Valencia M, Lee L, Hermenegildo C, Felipo V (1997) Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic Res 27(6):637–644

    Article  CAS  PubMed  Google Scholar 

  • Kramer L, Tribl B, Gendo A, Zauner C, Schneider B, Ferenci P, Madl C (2000) Partial pressure of ammonia versus ammonia in hepatic encephalopathy. Hepatology 31(1):30–34

    Article  CAS  PubMed  Google Scholar 

  • Kundra A, Jain A, Banga A, Bajaj G, Kar P (2005) Evaluation of plasma ammonia levels in patients with acute liver failure and chronic liver disease and its correlation with the severity of hepatic encephalopathy and clinical features of raised intracranial tension. Clin Biochem 38(8):696–699

    Article  CAS  PubMed  Google Scholar 

  • Lai JC, Cooper AJ (1986) Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47(5):1376–1386

    Article  CAS  PubMed  Google Scholar 

  • Lapidot A, Gopher A (1997) Quantitation of metabolic compartmentation in hyperammonemic brain by natural abundance 13C-NMR detection of 13C–15N coupling patterns and isotopic shifts. Eur J Biochem 243(3):597–604

    Article  CAS  PubMed  Google Scholar 

  • Leke R, Bak LK, Schousboe A, Waagepetersen HS (2008) Demonstration of neuron-glia transfer of precursors for GABA biosynthesis in a co-culture system of dissociated mouse cerebral cortex. Neurochem Res 33(12):2629–2635

    Article  CAS  PubMed  Google Scholar 

  • Lockwood AH (2004) Blood ammonia levels and hepatic encephalopathy. Metab Brain Dis 19(3–4):345–349

    Article  CAS  PubMed  Google Scholar 

  • Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27(45):12255–12266

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Merle M, Martin M, Villégier A, Canioni P (1996) [1–13C]Glucose metabolism in brain cells: isotopomer analysis of glutamine from cerebellar astrocytes and glutamate from granule cells. Dev Neurosci 18(5–6):460–468

    Article  CAS  PubMed  Google Scholar 

  • Murthy CR, Rama Rao KV, Bai G, Norenberg MD (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 66(2):282–288

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis 13(4):319–335

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161(2):303–310

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Rao KV, Jayakumar AR (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20(4):303–318

    Article  CAS  PubMed  Google Scholar 

  • Ott P, Clemmesen O, Larsen FS (2005) Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis. Neurochem Int 47(1–2):13–18

    Article  CAS  PubMed  Google Scholar 

  • Patel MS (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem 22(5):717–724

    Article  CAS  PubMed  Google Scholar 

  • Rama Rao KV, Jayakumar AR, Norenberg MD (2003) Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem Int 43(4–5):517–523

    Article  CAS  PubMed  Google Scholar 

  • Rama Rao KV, Jayakumar AR, Norenberg MD (2005) Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem Int 47(1–2):31–38

    Article  CAS  PubMed  Google Scholar 

  • Rao KV, Norenberg MD (2001) Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis 16(1–2):67–78

    Article  CAS  PubMed  Google Scholar 

  • Ratnakumari L, Murthy CR (1992) In vitro and in vivo effects of ammonia on glucose metabolism in the astrocytes of rat cerebral cortex. Neurosci Lett 148(1–2):85–88

    Article  CAS  PubMed  Google Scholar 

  • Ratnakumari L, Murthy CR (1993) Response of rat cerebral glycolytic enzymes to hyperammonemic states. Neurosci Lett 161(1):37–40

    Article  CAS  PubMed  Google Scholar 

  • Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53(3):355–369

    CAS  PubMed  Google Scholar 

  • Schousboe A, Waagepetersen HS (2007) GABA: homeostatic and pharmacological aspects. Prog Brain Res 160:9–19

    Article  CAS  PubMed  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329(1–2):364–367

    Article  CAS  PubMed  Google Scholar 

  • Swain M, Butterworth RF, Blei AT (1992) Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 15(3):449–453

    Article  CAS  PubMed  Google Scholar 

  • Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17(3):932–940

    CAS  PubMed  Google Scholar 

  • Tofteng F, Larsen FS (2002) Monitoring extracellular concentrations of lactate, glutamate, and glycerol by in vivo microdialysis in the brain during liver transplantation in acute liver failure. Liver Transpl 8(3):302–305

    Article  PubMed  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2000) A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75(2):471–479

    Article  CAS  PubMed  Google Scholar 

  • Waagepetersen HS, Qu H, Hertz L, Sonnewald U, Schousboe A (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem Res 27(11):1431–1437

    Article  CAS  PubMed  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41(5):1484–1487

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Nissim I, Hertz L (1990) Precursors of glutamic acid nitrogen in primary neuronal cultures: studies with 15N. Neurochem Res 15(12):1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C (2007) The anaplerotic flux and ammonia detoxification in hepatic encephalopathy. Metab Brain Dis 22(3–4):235–249

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Butterworth R (2005) An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: further studies using NMR spectroscopy. Neurochem Int 47(1–2):19–30

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Leibfritz D (2005) Ammonia toxicity under hyponatremic conditions in astrocytes: de novo synthesis of amino acids for the osmoregulatory response. Neurochem Int 47(1–2):39–50

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Brand A, Richter-Landsberg C, Leibfritz D (1998) Multinuclear NMR spectroscopy studies on NH4Cl-induced metabolic alterations and detoxification processes in primary astrocytes and glioma cells. Dev Neurosci 20(4–5):417–426

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Richter-Landsberg C, Brand A, Leibfritz D (2000) NMR Spectroscopic study on the metabolic fate of [3–13C]alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism. Glia 32(3):286–303

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann C, Chatauret N, Leibfritz D, Butterworth RF (2003) Selective increase of brain lactate synthesis in experimental acute liver failure: results of a [H–C] nuclear magnetic resonance study. Hepatology 37(2):420–428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The skilful technical assistance of Ms Ann Lene Vigh is highly appreciated. A travel grant to Renata Leke from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Capes is cordially acknowledged. The experimental study has been supported by grants from the Danish Medical Research Council (271-08-0505; 271-07-0267). The Carlsberg Foundation is cordially thanked for supporting a post doc. fellowship to Lasse Bak (2007–2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasse K. Bak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leke, R., Bak, L.K., Anker, M. et al. Detoxification of Ammonia in Mouse Cortical GABAergic Cell Cultures Increases Neuronal Oxidative Metabolism and Reveals an Emerging Role for Release of Glucose-Derived Alanine. Neurotox Res 19, 496–510 (2011). https://doi.org/10.1007/s12640-010-9198-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9198-7

Keywords

Navigation