Skip to main content
Log in

Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Uptake kinetics and contents of GABA in cultured, normal (i.e. nontransformed) glia cells obtained from the brain hemispheres of newborn mice were measured together with the activity of the GABA transaminase. During three weeks of culturing the activity of the transaminase rose from a low neonatal value toward the level in the adult brain. The uptake kinetics indicated an unsaturable component together with an uptake following Michaelis-Menten kinetics. Both theK m (40 μM) and theV max (0.350 nmol×min−1×mg−1 cell protein) were reasonably comparable to the corresponding values in brain slices, and theV max was much higher than that reported for other glial preparations. The GABA content was low (<5 nmol/mg cell protein), which is in agreement with the high activity of the GABA transaminase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnfred, T., andHertz, L. 1971. Effects of potassium and glutamate on brain cortex slices: Uptake and release of glutamic and other amino acids.J. Neurochem. 18:259–265.

    Google Scholar 

  2. Jasper, H. H., andKoyama, I. 1969. Rate of release of amino acids from the cerebral cortex in the cat as affected by brain-stem and thalamic stimulation.Can. J. Physiol. Pharmacol. 47:889–905.

    Google Scholar 

  3. Katz, R. J., Chase, T. N., andKopin, I. J. 1969. Effects of ions on stimulus induced release of amino acids from mammalian brain slices.J. Neurochem. 16:961–967.

    Google Scholar 

  4. Machiyama, Y., Balázs, R., andRichter, D. 1967. Effect of K+-stimulation on GABA metabolism in brain slicesin vitro.J. Neurochem. 14:591–594.

    Google Scholar 

  5. Machiyama, Y., Balázs, R., Hammond, B. J., Julian, T., andRichter, D. 1970. The metabolism of γ-aminobutyrate and glucose in potassium ion-stimulated brain tissuein vitro.Biochem. J. 116:469–481.

    Google Scholar 

  6. Srinivasan, V., Neal, M. J., andMitchell, J. F. 1969. The effect of electrical stimulation and high potassium concentrations on the efflux of (3H) γ-aminobutyric acid from brain slices.J. Neurochem. 16:1235–1244.

    Google Scholar 

  7. Curtis, D. R., andJohnston, G. A. R. 1974. Amino acid transmitters in the mammalian central nervous system.Ergeb. Physiol. 69:97–188.

    Google Scholar 

  8. Curtis, D. R., andWatkins, J. C. 1960. The excitation and depression of spinal neurones by structurally related amino acids.J. Neurochem. 6:117–141.

    Google Scholar 

  9. Geller, H. M., andWoodward, D. J. 1974. Responses of cultured cerebellar neurons to iontophoretically applied amino acids.Brain Research 74:67–80.

    Google Scholar 

  10. Krnjević, K. 1970. Glutamate and γ-aminobutyric acid in brain.Nature 228:119–124.

    Google Scholar 

  11. Krnjević, K., andSchwartz, S. 1966. Is γ-aminobutyric acid an inhibitory transmitter?Nature 211:1372–1374.

    Google Scholar 

  12. Krnjević, K., andSchwartz, S. 1967. The action of γ-aminobutyric acid on cortical neurones.Exptl. Brain Research 3:320–336.

    Google Scholar 

  13. Obata, K., Ito, M., Ochi, R., andSato, N. 1967. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric acid on Deiters neurones.Exptl. Brain Research 4:43–57.

    Google Scholar 

  14. McLaughlin, B. J., Wood, J. G., Saito, K., Barber, R., Vaughn, J. E., Roberts, E., andWu, J-Y. 1974. The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum.Brain Research 76:377–391.

    Google Scholar 

  15. Saito, K., Barber, R., Wu, J-Y., Matsuda, T., Roberts, E., andVaughn, J. E. 1974. Immunohistochemical localization of glutamate decarboxylase in rat cerebellum.Proc. Natl. Acad. Sci. US 71:269–273.

    Google Scholar 

  16. Enna, S. J., Kuhar, M. J., andSnyder, S. H. 1975. Regional distribution of postsynaptic receptor binding for gammaaminobutyric acid (GABA) in monkey brain.Brain Research 93:168–174.

    Google Scholar 

  17. Peck, E. J., Jr., Schaeffer, J. M., andClark, J. H. 1973. γ-Aminobutyric acid, bicuculline, and post-synaptic binding sites.Biochem. Biophys. Research Comm. 52:394–400.

    Google Scholar 

  18. Peck, E. J., Jr., Schaeffer, J. M., andClark, J. H. 1976. In pursuit of the GABA receptor. Pages 319–336,in Roberts, E., Chase, T. N., andTower, D. B. (eds.), GABA in the nervous system function. Raven Press, New York.

    Google Scholar 

  19. Zukin, S. R., Young, A. B., andSnyder, S. H. 1974. Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system.Proc. Natl. Acad. Sci. US 71:4802–4807.

    Google Scholar 

  20. Otsuka, M. 1972. γ-aminobutyric acid in the nervous system. Pages 249–289,in Bourne, G. H. (ed.), The structure and function of nervous tissue, Vol. 4, Academic Press, New York.

    Google Scholar 

  21. Hökfelt, T., andLjungdahl, Å. 1972. Autoradiographic identification of cerebral and cerebellar cortical neurones accumulating labeled gamma-aminobutyric acid (3H-GABA).Exptl. Brain Researc 14:354–362.

    Google Scholar 

  22. Iversen, L. L., andBloom, F. E. 1972. Studies on the uptake of3H-GABA and3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography.Brain Research 41:131–143.

    Google Scholar 

  23. Lasher, R. S. 1975. Uptake of GABA by neuronal and nonneuronal cells in dispersed cell cultures of postnatal rat cerebellum.J. Neurobiol. 6:597–608.

    Google Scholar 

  24. Storm-Mathisen, J. 1976. Distribution of the components of the GABA system in neuronal tissue: Cerebellum and hippocampus—Effects of axotomy. Pages 149–168,in:Roberts, E., Chase, T. N., andTower, D. B. (eds.), GABA in the nervous system function. Raven Press, New York.

    Google Scholar 

  25. Wilson, J. E., Wilkin, G. P., andBalazs, R. 1976. Metabolic properties of a purified preparation of large fragments of the cerebellar glomeruli: glucose metabolism and amino acid uptake.J. Neurochem. 26:957–965.

    Google Scholar 

  26. Henn, F. A., andHamberger, A. 1971. Glial cell function: Uptake of transmitter substances.Proc. Natl. Acad. Sci. US 68:2686–2690.

    Google Scholar 

  27. Hösli, E., Ljungdahl, Å, Hökfelt, T., andHösli, L. 1972. Spinal cord tissue cultures—A model for autoradiographic studies on uptake of putative neurotransmitters such as glycine and GABA.Experientia 28:1342–1344.

    Google Scholar 

  28. Hutchison, H. T., Werbach, K., Vance, C., andHaber, B. 1974. Uptake of neurotransmitters by clonal lines of astrocytes and neuroblastoma in culture. I. Transport of γ-aminobutyric acid.Brain Research 66:265–274.

    Google Scholar 

  29. Iversen, L. L., andKelly, J. S. 1975. Uptake and metabolism of γ-aminobutyric acid by neurones and glial cells.Biochem. Pharmacol. 24:933–938.

    Google Scholar 

  30. Roberts, P. J. 1976. Amino acid transport in spinal and sympathetic ganglia. Pages 165–178,in Levi, G., Battistin, L., andLajtha, A. (eds.), Transport phenomena in the nervous system, physiological and pathological aspects, Vol. 69, Advances in experimental medicine and biology, Plenum Press, New York.

    Google Scholar 

  31. Schon, F., andKelly, J. S. 1974. Autoradiographic localization of (3H)-GABA and (3H)-glutamate over satellite glial cells.Brain Research 66:275–288.

    Google Scholar 

  32. Schousboe, A., Lisy, V., andHertz, L. 1976. Postnatal alterations in effects of potassium on uptake and release of glutamate and GABA in rat brain cortex slices.J. Neurochem. 26:1023–1027.

    Google Scholar 

  33. Schrier, B. K., andThompson, E. J. 1974. On the role of glial cells in the mammalian nervous system.J. Biol. Chem. 249:1769–1780.

    Google Scholar 

  34. Young, J. A. C., Brown, D. A., Kelly, J. S., andSchon, F. 1973. Autoradiographic localization of sites of (3H) γ-aminobutyric acid accumulation in peripheral autonomic ganglia.Brain Research 63:479–486.

    Google Scholar 

  35. Booher, J., andSensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures.Neurobiology 2:97–105.

    Google Scholar 

  36. Hertz, L., andSchousboe, A. 1975. Ion and energy metabolism of the brain at the cellular level.Intern. Rev. Neurobiol. 18:141–211.

    Google Scholar 

  37. Schousboe, A., Fosmark, H., andFormby, B. 1976. Effect of serum withdrawal on Na+−K+ ATPase activity in astrocytes cultured from dissociated brain hemispheres.J. Neurochem. 26:1053–1055.

    Google Scholar 

  38. Schousboe, A., Fosmark, H., andHertz, L. 1975. High content of glutamate and of ATP in astrocytes cultured from rat brain hemispheres: effect of serum withdrawal and of cyclic AMP.J. Neurochem. 25:909–911.

    Google Scholar 

  39. Hertz, L., Svenneby, G., andSchousboe, A. 1976. Glutamate and GABA uptake into cultures of normal glia cells.Trans. Am. Soc. Neurochem. 7:192.

    Google Scholar 

  40. Bock, E., Jørgensen, O. S., Dittmann, L., andEng, L. F. 1975. Determination of brain-specific antigens in short term cultivated rat astroglia cells and in rat synaptosomes.J. Neurochem. 25:867–870.

    Google Scholar 

  41. Schousboe, A., Fosmark, H., andSvenneby, G. 1976. Taurine uptake in astrocytes cultured from dissociated mouse brain hemispheres.Brain Research, 116:158–164.

    Google Scholar 

  42. Hall, Z. W., andKravitz, E. A. 1967. The metabolism of γ-aminobutyric acid (GABA) in the lobster nervous system. I. GABA-glutamate transaminase.J. Neurochem. 14:45–54.

    Google Scholar 

  43. Schousboe, A., andHertz, L. 1971. Effects of potassium on indicator spaces and fluxes in slices of brain cortex from adult and newborn rats.J. Neurochem. 18:67–77.

    Google Scholar 

  44. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193:265–275.

    Google Scholar 

  45. Miller, G. L. 1959. Protein determination for large numbers of samples.Anal. Chem. 31:964.

    Google Scholar 

  46. Sellström, Å., Sjöberg, L-B., andHamberger, A. 1975. Neuronal and glial systems for γ-aminobutyric acid metabolism.J. Neurochem. 25:393–398.

    Google Scholar 

  47. Beart, P. M., Kelly, J. S., andSchon, F. 1974. γ-aminobutyric acid in the rat peripheral nervous system, pineal and posterior pituitary.Biochem. Soc. Trans. 2:266–268.

    Google Scholar 

  48. Schousboe, A., Wu, J-Y., andRoberts, E. 1973. Purification and characterization of the 4-aminobutyrate-2-ketoglutarate transaminase from mouse brain.Biochemistry 12:2868–2873.

    Google Scholar 

  49. Roberts, E. 1962. γ-aminobutyric acid. Pages 636–656in Elliott, K. A. C., Page, I. H., andQuastel, J. H. (eds.), Neurochemistry, the chemistry of brain and nerve. 2nd ed, Charles C. Thomas. Springfield, Illinois.

    Google Scholar 

  50. Wilson, S. H., Schrier, B. K., Farber, J. L., Thompson, E. J., Rosenberg, R. N., Blume, A. J., andNirenberg, M. W. 1972. Markers for gene expression in cultured cells from the nervous system.J. Biol. Chem. 247:3159–3169.

    Google Scholar 

  51. Cohen, S. R., andLajtha, A. 1972. Amino acid transport. Pages 543–572,in Lajtha, A. (ed.), Handbook of neurochemistry, Vol. 7, Plenum Press, New York.

    Google Scholar 

  52. Martin, D. L., andSmith, A. A., III. 1972. Ions and the transport of gammaaminobutyric acid by synaptosomes.J. Neurochem. 19:841–855.

    Google Scholar 

  53. Quastel, J. H. 1974. Amino acids and the brain.Biochem. Soc. Trans. 2:765–780.

    Google Scholar 

  54. Sellström, Å., andHamberger, A. 1975. Neuronal and glial systems for γ-aminobutyric acid transport.J. Neurochem. 24:847–852.

    Google Scholar 

  55. Hyde, J. C., andRobinson, N. 1974. Appearance of gamma aminobutyrate transaminase activity in developing rat brain.J. Neurochem. 23:365–367.

    Google Scholar 

  56. Van Gelder, N. M. 1965. The histochemical demonstration of γ-aminobutyric acid metabolism by reduction of a tetrazolium salt.J. Neurochem. 12:231–237.

    Google Scholar 

  57. Levi, G., Poce, N., andRaiteri, M. 1976. Uptake and exchange of GABA and glutamate in isolated nerve endings. Pages 273–289,in Levi, G., Battistin, L., andLajtha, A. (eds.), Transport phenomena in the nervous system, physiological and pathological aspect, Vol. 69, Advances in experimental medicine and biology, Plenum Press, New York.

    Google Scholar 

  58. Hebb, C. 1970. CNS at the cellular level: Identity of transmitter agents.Ann. Rev. Physiol. 32:165–192.

    Google Scholar 

  59. Orrego, F., andMiranda, R. 1976. Electrically induced release of (3H) GABA from neocortical thin slices. Effects of stimulus waveform and of aminooxyacetic acid.J. Neurochem. 26:1033–1038.

    Google Scholar 

  60. Wood, J. D. 1967. A possible role for gamma-aminobutyric acid in the homeostatic control of brain metabolism under conditions of hypoxia.Exptl. Brain Research 4:81–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schousboe, A., Hertz, L. & Svenneby, G. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem Res 2, 217–229 (1977). https://doi.org/10.1007/BF00964098

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964098

Keywords

Navigation