Skip to main content

Advertisement

Log in

Substrate Competition Studies Demonstrate Oxidative Metabolism of Glucose, Glutamate, Glutamine, Lactate and 3-Hydroxybutyrate in Cortical Astrocytes from Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is well established that astrocytes can utilize many substrates to support oxidative energy metabolism; however, use of energy substrates in the presence of other substrates, as would occur in vivo, has not been systematically evaluated. Substrate competition studies were used to determine changes in the rates of 14CO2 production since little is known about the interaction of energy substrates in astrocytes. The rates of 14CO2 production from 1 mM D-[6-14C]glucose, l-[U-14C]glutamate, l-[U-14C]glutamine, d-3-hydroxy[3-14C]butyrate, l-[U-14C]lactate and l-[U-14C]malate by primary cultures of astrocytes from rat brain were determined to be 1.17 ± 0.19, 85.30 ± 12.25, 28.04 ± 2.84, 13.55 ± 4.56, 14.84 ± 2.40 and 5.20 ± 1.20 nmol/h/mg protein (mean ± SEM), respectively. The rate of 14CO2 production from glutamate oxidation was higher than that of the other substrates Addition of unlabeled glutamate significantly decreased the rates of 14CO2 production from all other substrates studied; however, glutamate oxidation was not altered by the addition of any of the other substrates. The rate of 14CO2 production of glutamine was decreased by glutamate, but not altered by other substrates. The rate of 14CO2 production from glucose was significantly decreased by the addition of unlabeled glutamate, glutamine or lactate, but not by 3-hydroxybutyrate or malate. Addition of unlabeled glucose did not significantly alter the 14CO2 production from any other substrate. 14CO2 production from lactate was decreased by the addition of unlabeled glutamine or glutamate and increased by addition of malate. The 14CO2 production from malate was decreased by the addition of unlabeled glutamate or lactate, but was not altered by the other substrates. The substrate utilization for oxidative energy metabolism in astrocytes is very different than the profile previously reported for synaptic terminals. These studies demonstrate the potential use of multiple substrates including glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate as energy substrates for astrocytes. The data also provide evidence of interactions of substrates and multiple compartments of TCA cycle activity in cultured astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  PubMed  CAS  Google Scholar 

  2. Hertz L (2006) Glutamate, a neurotransmitter—and so much more. A synopsis of Wierzba III. Neurochem Int 48:416–425

    Article  PubMed  CAS  Google Scholar 

  3. Gruetter R, Adriany G, Choi IY, Henry PG, Lei H, Oz G (2003) Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16:313–338

    Article  PubMed  CAS  Google Scholar 

  4. Bluml S, Moreno-Torres A, Shic F, Nguy CH, Ross BD (2002) Tricarboxylic acid cycle of glia in the in vivo human brain. NMR Biomed 15:1–5

    Article  PubMed  CAS  Google Scholar 

  5. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  PubMed  CAS  Google Scholar 

  6. Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (2001) Multiple compartments with different metabolic characteristics are involved in biosynthesis of intracellular and released glutamine and citrate in astrocytes. Glia 35:246–252

    Article  PubMed  CAS  Google Scholar 

  7. Qu H, Eloqayli H, Unsgard G, Sonnewald U (2001) Glutamate decreases pyruvate carboxylase activity and spares glucose as energy substrate in cultured cerebellar astrocytes. J Neurosci Res 66:1127–1132

    Article  PubMed  CAS  Google Scholar 

  8. Peng L, Swanson RA, Hertz L (2001) Effects of l-glutamate, d-aspartate, and monensin on glycolytic and oxidative glucose metabolism in mouse astrocyte cultures: further evidence that glutamate uptake is metabolically driven by oxidative metabolism. Neurochem Int 38:437–443

    Article  PubMed  CAS  Google Scholar 

  9. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  PubMed  CAS  Google Scholar 

  10. McKenna MC, Tildon JT, Couto R, Stevenson JH, Caprio FJ (1990) The metabolism of malate by cultured rat brain astrocytes. Neurochem Res 15:1211–1220

    Article  PubMed  CAS  Google Scholar 

  11. McKenna MC, Hopkins IB, Carey A (2001) Alpha-cyano-4-hydroxycinnamate decreases both glucose and lactate metabolism in neurons and astrocytes: implications for lactate as an energy substrate for neurons. J Neurosci Res 66:747–754

    Article  PubMed  CAS  Google Scholar 

  12. Hertz L, Hertz E (2003) Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem Int 43:355–361

    Article  PubMed  CAS  Google Scholar 

  13. Hertz L, Drejer J, Schousboe A (1988) Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary cultures. Neurochem Res 13:605–610

    Article  PubMed  CAS  Google Scholar 

  14. Hertz L (2003) Astrocytic amino acid metabolism under control conditions and during oxygen and/or glucose deprivation. Neurochem Res 28:243–258

    Article  PubMed  CAS  Google Scholar 

  15. Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res 18:551–561

    Article  PubMed  CAS  Google Scholar 

  16. Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A (1998) Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13C-NMR spectroscopy. Dev Neurosci 20:310–320

    Article  PubMed  CAS  Google Scholar 

  17. Sonnewald U, Westergaard N, Schousboe A (1997) Glutamate transport and metabolism in astrocytes. Glia 21:56–63

    Article  PubMed  CAS  Google Scholar 

  18. Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L, Hertz L (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15:359–366

    Article  PubMed  CAS  Google Scholar 

  19. Dienel GA (2012) Fueling and imaging brain activation. ASN Neuro 4(5):e00093. doi:10.1042/AN20120021

    Article  CAS  Google Scholar 

  20. McKenna MC, Dienel GA, Waagepetersen HS, Schousboe A, Sonnewald U (2011) Energy metabolism of the brain. In: Brady S, Price D, Siegal G (eds) Basic neurochemistry, vol 8. Blackwell, Oxford

    Google Scholar 

  21. Lai JC, Murthy CR, Cooper AJ, Hertz E, Hertz L (1989) Differential effects of ammonia and beta-methylene-DL-aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture. Neurochem Res 14:377–389

    Article  PubMed  CAS  Google Scholar 

  22. Yudkoff M, Nissim I, Pleasure D (1988) Astrocyte metabolism of [15N]glutamine: implications for the glutamine-glutamate cycle. J Neurochem 51:843–850

    Article  PubMed  CAS  Google Scholar 

  23. Yu AC, Fisher TE, Hertz E, Tildon JT, Schousboe A, Hertz L (1984) Metabolic fate of [14C]-glutamine in mouse cerebral neurons in primary cultures. J Neurosci Res 11:351–357

    Article  PubMed  CAS  Google Scholar 

  24. Zielke HR, Tildon JT, Landry ME, Max SR (1990) Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes. Neurochem Res 15:1115–1122

    Article  PubMed  CAS  Google Scholar 

  25. McKenna MC, Tildon JT, Stevenson JH, Huang X (1996) New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes. Dev Neurosci 18:380–390

    Article  PubMed  CAS  Google Scholar 

  26. McKenna MC (2003) Glutamate metabolism in primary cultures of rat brain astrocytes: rationale and initial efforts toward developing a compartmental model. Adv Exp Med Biol 537:317–341

    Article  PubMed  CAS  Google Scholar 

  27. Edmond J, Auestad N, Robbins RA, Bergstrom JD (1985) Ketone body metabolism in the neonate: development and the effect of diet. Fed Proc 44:2359–2364

    PubMed  CAS  Google Scholar 

  28. Tildon JT, McKenna MC, Stevenson JH Jr (1994) Transport of 3-hydroxybutyrate by cultured rat brain astrocytes. Neurochem Res 19:1237–1242

    Article  PubMed  CAS  Google Scholar 

  29. Lopes-Cardozo M, Larsson OM, Schousboe A (1986) Acetoacetate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex. J Neurochem 46:773–778

    Article  PubMed  CAS  Google Scholar 

  30. Dienel GA, Cruz NF (2003) Neighborly interactions of metabolically-activated astrocytes in vivo. Neurochem Int 43:339–354

    Article  PubMed  CAS  Google Scholar 

  31. Tildon JT, McKenna MC, Stevenson J, Couto R (1993) Transport of l-lactate by cultured rat brain astrocytes. Neurochem Res 18:177–184

    Article  PubMed  CAS  Google Scholar 

  32. Sickmann HM, Schousboe A, Fosgerau K, Waagepetersen HS (2005) Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30:1295–1304

    Article  PubMed  CAS  Google Scholar 

  33. Qu H, Eloqayli H, Sonnewald U (2005) Pentylenetetrazole affects metabolism of astrocytes in culture. J Neurosci Res 79:48–54

    Article  PubMed  CAS  Google Scholar 

  34. Oh YJ, Markelonis GJ, Oh TH (1991) Immunocytochemical localization of mitochondrial malate dehydrogenase in primary cultures of rat astrocytes and oligodendrocytes. J Histochem Cytochem 39:681–688

    Article  PubMed  CAS  Google Scholar 

  35. Cesar M, Hamprecht B (1995) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J Neurochem 64:2312–2318

    Article  PubMed  CAS  Google Scholar 

  36. Cremer JE (1981) Nutrients for the brain: problems in supply. Early Hum Dev 5:117–132

    Article  PubMed  CAS  Google Scholar 

  37. Cremer JE (1982) Substrate utilization and brain development. J Cereb Blood Flow Metab 2:394–407

    Article  PubMed  CAS  Google Scholar 

  38. Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285:E1127–E1134

    PubMed  CAS  Google Scholar 

  39. Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    Article  PubMed  CAS  Google Scholar 

  40. Lapidot A, Gopher A (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of d-[U-13C]glucose metabolites. J Biol Chem 269:27198–27208

    PubMed  CAS  Google Scholar 

  41. Qu H, Haberg A, Haraldseth O, Unsgard G, Sonnewald U (2000) (13)C MR spectroscopy study of lactate as substrate for rat brain. Dev Neurosci 22:429–436

    Article  PubMed  CAS  Google Scholar 

  42. Sonnewald U, Westergaard N, Hassel B, Muller TB, Unsgard G, Fonnum F, Hertz L, Schousboe A, Petersen SB (1993) NMR spectroscopic studies of 13C acetate and 13C glucose metabolism in neocortical astrocytes: evidence for mitochondrial heterogeneity. Dev Neurosci 15:351–358

    Article  PubMed  CAS  Google Scholar 

  43. Peng L, Zhang X, Hertz L (1994) High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Brain Res 663:168–172

    Article  PubMed  CAS  Google Scholar 

  44. Dienel GA, Cruz NF (2009) Exchange-mediated dilution of brain lactate specific activity: implications for the origin of glutamate dilution and the contributions of glutamine dilution and other pathways. J Neurochem 109(Suppl 1):30–37

    Article  PubMed  CAS  Google Scholar 

  45. Cerdan S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, Garcia-Martin ML (2006) The redox switch/redox coupling hypothesis. Neurochem Int 48:523–530

    Article  PubMed  CAS  Google Scholar 

  46. Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55:1263–1271

    Article  PubMed  Google Scholar 

  47. Alves PM, McKenna MC, Sonnewald U (1995) Lactate metabolism in mouse brain astrocytes studied by [13C] NMR spectroscopy. NeuroReport 6:2201–2204

    Article  PubMed  CAS  Google Scholar 

  48. Abe T, Takahashi S, Suzuki N (2006) Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of d-aspartate or potassium stimulation. J Cereb Blood Flow Metab 26:153–160

    Article  PubMed  CAS  Google Scholar 

  49. Hertz L, Dienel GA (2005) Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res 79:11–18

    Article  PubMed  CAS  Google Scholar 

  50. Gandhi GK, Cruz NF, Ball KK, Theus SA, Dienel GA (2009) Selective astrocytic gap junctional trafficking of molecules involved in the glycolytic pathway: impact on cellular brain imaging. J Neurochem 110:857–869

    Article  PubMed  CAS  Google Scholar 

  51. Zielke HR, Zielke CL, Baab PJ, Tildon JT (2007) Effect of fluorocitrate on cerebral oxidation of lactate and glucose in freely moving rats. J Neurochem 101:9–16

    Article  PubMed  CAS  Google Scholar 

  52. McKenna MC, Sonnewald U (2005) GABA alters the metabolic fate of [U-13C]glutamate in cultured cortical astrocytes. J Neurosci Res 79:81–87

    Article  PubMed  CAS  Google Scholar 

  53. McKenna MC, Sonnewald U, Huang X, Stevenson J, Johnsen SF, Sande LM, Zielke HR (1998) Alpha-ketoisocaproate alters the production of both lactate and aspartate from [U-13C]glutamate in astrocytes: a 13C NMR study. J Neurochem 70:1001–1008

    Article  PubMed  CAS  Google Scholar 

  54. McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  PubMed  CAS  Google Scholar 

  55. Schousboe A, Westergaard N, Waagepetersen HS, Larsson OM, Bakken IJ, Sonnewald U (1997) Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21:99–105

    Article  PubMed  CAS  Google Scholar 

  56. Qu H, Konradsen JR, van Hengel M, Wolt S, Sonnewald U (2001) Effect of glutamine and GABA on [U-(13)C]glutamate metabolism in cerebellar astrocytes and granule neurons. J Neurosci Res 66:885–890

    Article  PubMed  CAS  Google Scholar 

  57. Westergaard N, Sonnewald U, Schousboe A (1995) Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited. Dev Neurosci 17:203–211

    Article  PubMed  CAS  Google Scholar 

  58. Sonnewald U, Westergaard N, Petersen SB, Unsgard G, Schousboe A (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    Article  PubMed  CAS  Google Scholar 

  59. Schousboe A, Waagepetersen HS (2005) Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res 8:221–225

    Article  PubMed  CAS  Google Scholar 

  60. Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29:999–1005

    Article  PubMed  CAS  Google Scholar 

  61. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  62. Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720

    Article  PubMed  CAS  Google Scholar 

  63. Kreft M, Bak LK, Waagepetersen HS, Schousboe A (2012) Aspects of astrocyte energy metabolism, amino acid neurotransmitter homeostasis and metabolic compartmentation. ASN Neuro 4(3):e00086. doi:10.1042/AN20120007

    Article  PubMed  CAS  Google Scholar 

  64. Westergaard N, Drejer J, Schousboe A, Sonnewald U (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate. Glia 17:160–168

    Article  PubMed  CAS  Google Scholar 

  65. Malik P, McKenna MC, Tildon JT (1993) Regulation of malate dehydrogenases from neonatal, adolescent, and mature rat brain. Neurochem Res 18:247–257

    Article  PubMed  CAS  Google Scholar 

  66. McKenna MC, Tildon JT, Stevenson JH, Hopkins IB (1994) Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: evidence for multiple compartments of tricarboxylic acid cycle activity. Dev Neurosci 16:291–300

    Article  PubMed  CAS  Google Scholar 

  67. McKenna MC, Bezold LI, Kimatian SJ, Tildon JT (1986) Competition of glycerol with other oxidizable substrates in rat brain. Biochem J 237:47–51

    PubMed  CAS  Google Scholar 

  68. McKenna MC, Hopkins IB, Lindauer SL, Bamford P (2006) Aspartate aminotransferase in synaptic and nonsynaptic mitochondria: differential effect of compounds that influence transient hetero-enzyme complex (metabolon) formation. Neurochem Int 48:629–636

    Article  PubMed  CAS  Google Scholar 

  69. McKenna MC, Tildon JT, Stevenson JH, Huang X, Kingwell KG (1995) Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem Res 20:1491–1501

    Article  PubMed  CAS  Google Scholar 

  70. Hertz L, Juurlink BHJ, Fosmark H, Schousboe A (eds) (1982) Astrocytes in primary culture. In: Pfeiffer SE (ed) Neuroscience approached through cell culture, Vol 1. CRC Press, Boca Raton, pp 175–186

  71. Chechik T, Roeder LM, Tildon JT, Poduslo SE (1987) Ketone body enzyme activities in purified neurons, astrocytes and oligodendroglia. Neurochem Int 10:95–99

    Article  PubMed  CAS  Google Scholar 

  72. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  73. Schousboe A, Sickmann HM, Bak LK, Schousboe I, Jajo FS, Faek SA, Waagepetersen HS (2011) Neuron-glia interactions in glutamatergic neurotransmission: roles of oxidative and glycolytic adenosine triphosphate as energy source. J Neurosci Res 89:1926–1934

    Article  PubMed  CAS  Google Scholar 

  74. Li B, Hertz L, Peng L (2012) Aralar mRNA and protein levels in neurons and astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochem Int. doi:10.1016/j.neuint.2012.09.009

  75. Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF (2007) Mitochondrial transport proteins of the brain. J Neurosci Res 85:3367–3377

    Article  PubMed  CAS  Google Scholar 

  76. Bergles DE, Diamond JS, Jahr CE (1999) Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 9:293–298

    Article  PubMed  CAS  Google Scholar 

  77. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  PubMed  CAS  Google Scholar 

  78. Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281:E100–E112

    PubMed  CAS  Google Scholar 

  79. Edmond J (1992) Energy metabolism in developing brain cells. Can J Physiol Pharmacol 70(Suppl):S118–S129

    Article  PubMed  CAS  Google Scholar 

  80. Schousboe A, Sonnewald U, Civenni G, Gegelashvili G (1997) Role of astrocytes in glutamate homeostasis. Implications for excitotoxicity. Adv Exp Med Biol 429:195–206

    PubMed  CAS  Google Scholar 

  81. Yudkoff M, Nissim I, Daikhin Y, Lin ZP, Nelson D, Pleasure D, Erecinska M (1993) Brain glutamate metabolism: neuronal-astroglial relationships. Dev Neurosci 15:343–350

    Article  PubMed  CAS  Google Scholar 

  82. Yudkoff M, Nissim I, Hummeler K, Medow M, Pleasure D (1986) Utilization of [15N]glutamate by cultured astrocytes. Biochem J 234:185–192

    PubMed  CAS  Google Scholar 

  83. Pellerin L, Magistretti PJ (1996) Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ ATPase. Dev Neurosci 18:336–342

    Article  PubMed  CAS  Google Scholar 

  84. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  85. Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138

    Article  PubMed  CAS  Google Scholar 

  86. Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O’Donnell JC, Spruce LA, Xiao R, Guo W, Putt M, Seeholzer S, Ischiropoulos H, Robinson MB (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288

    Article  PubMed  CAS  Google Scholar 

  87. Waagepetersen HS, Qu H, Hertz L, Sonnewald U, Schousboe A (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem Res 27:1431–1437

    Article  PubMed  CAS  Google Scholar 

  88. Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 85:3318–3325

    Article  PubMed  CAS  Google Scholar 

  89. Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C5]glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67:2566–2572

    Article  PubMed  CAS  Google Scholar 

  90. Waagepetersen HS, Sonnewald U, Qu H, Schousboe A (1999) Mitochondrial compartmentation at the cellular level: astrocytes and neurons. Ann N Y Acad Sci 893:421–425

    Article  PubMed  CAS  Google Scholar 

  91. Hertz L (2004) Intercellular metabolic compartmentation in the brain: past, present and future. Neurochem Int 45:285–296

    Article  PubMed  CAS  Google Scholar 

  92. Bakken IJ, White LR, Aasly J, Unsgard G, Sonnewald U (1997) Lactate formation from [U-13C]aspartate in cultured astrocytes: compartmentation of pyruvate metabolism. Neurosci Lett 237:117–120

    Article  PubMed  CAS  Google Scholar 

  93. Takahashi S, Izawa Y, Suzuki N (2012) Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro 4:71–88

    Article  CAS  Google Scholar 

  94. Bolanos JP, Cidad P, Garcia-Nogales P, Delgado-Esteban M, Fernandez E, Almeida A (2004) Regulation of glucose metabolism by nitrosative stress in neural cells. Mol Aspects Med 25:61–73

    Article  PubMed  CAS  Google Scholar 

  95. Garcia-Nogales P, Almeida A, Fernandez E, Medina JM, Bolanos JP (1999) Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes. J Neurochem 72:1750–1758

    Article  PubMed  CAS  Google Scholar 

  96. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752

    Article  PubMed  CAS  Google Scholar 

  97. Halim ND, McFate T, Mohyeldin A, Okagaki P, Korotchkina LG, Patel MS, Jeoung NH, Harris RA, Schell MJ, Verma A (2010) Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 58:1168–1176

    PubMed  Google Scholar 

  98. McKenna MC, Tildon JT, Stevenson JH, Hopkins IB, Huang X, Couto R (1998) Lactate transport by cortical synaptosomes from adult rat brain: characterization of kinetics and inhibitor specificity. Dev Neurosci 20:300–309

    Article  PubMed  CAS  Google Scholar 

  99. Pellerin L, Magistretti PJ (2011) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166

    Article  PubMed  CAS  Google Scholar 

  100. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    Article  PubMed  Google Scholar 

  101. Barros LF, Deitmer JW (2010) Glucose and lactate supply to the synapse. Brain Res Rev 63:149–159

    Article  PubMed  CAS  Google Scholar 

  102. Pellerin L (2005) How astrocytes feed hungry neurons. Mol Neurobiol 32:59–72

    Article  PubMed  CAS  Google Scholar 

  103. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:586–602

    Article  PubMed  CAS  Google Scholar 

  104. Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109(Suppl 1):55–62

    Article  PubMed  CAS  Google Scholar 

  105. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:1895–1904

    Article  PubMed  CAS  Google Scholar 

  106. Zhang F, Vannucci SJ, Philp NJ, Simpson IA (2005) Monocarboxylate transporter expression in the spontaneous hypertensive rat: effect of stroke. J Neurosci Res 79:139–145

    Article  PubMed  CAS  Google Scholar 

  107. Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids 70:265–275

    Article  PubMed  CAS  Google Scholar 

  108. Nehlig A (1999) Age-dependent pathways of brain energy metabolism: the suckling rat, a natural model of the ketogenic diet. Epilepsy Res 37:211–221

    Article  PubMed  CAS  Google Scholar 

  109. Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4-13 C2]-beta-Hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22:890–898

    Article  PubMed  CAS  Google Scholar 

  110. Waagepetersen HS, Qu H, Schousboe A, Sonnewald U (2001) Elucidation of the quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes. J Neurosci Res 66:763–770

    Article  PubMed  CAS  Google Scholar 

  111. Huang Y, Zielke CL, Tildon JT, Zielke HR (1993) Monitoring in vivo oxidation of 14C-labelled substrates to 14CO2 by brain microdialysis. Dev Neurosci 15:233–239

    Article  PubMed  CAS  Google Scholar 

  112. Duffy TE, Nelson SR, Lowry OH (1972) Cerebral carbohydrate metabolism during acute hypoxia and recovery. J Neurochem 19:959–977

    Article  PubMed  CAS  Google Scholar 

  113. Hindfelt B, Plum F, Duffy TE (1977) Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest 59:386–396

    Article  PubMed  CAS  Google Scholar 

  114. Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant HD16596. The technical assistance of Irene Hopkins and Joseph Stevenson is gratefully acknowledged for performing these studies. I thank Dr. Leif Hertz for his insightful comments and feedback regarding this manuscript and his pioneering work in the field of brain energy metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. McKenna.

Additional information

Special Issue: In Honor of Leif Hertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenna, M.C. Substrate Competition Studies Demonstrate Oxidative Metabolism of Glucose, Glutamate, Glutamine, Lactate and 3-Hydroxybutyrate in Cortical Astrocytes from Rat Brain. Neurochem Res 37, 2613–2626 (2012). https://doi.org/10.1007/s11064-012-0901-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0901-3

Keywords

Navigation