Skip to main content

Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens

  • Chapter
  • First Online:
Fungal Biotechnology and Bioengineering

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance wherein plant defences are preconditioned by prior infection or treatment that results in resistance against subsequent challenge by a pathogen or parasite. Systemic acquired resistance (SAR) is a form of induced resistance that is activated throughout a plant after being exposed to elicitors from virulent, avirulent or non-pathogenic microbes or artificial chemical stimuli such as chitosan or salicylic acid (SA). Induced systemic resistance (ISR) is a resistance mechanism in plants that is activated by infection. Its mode of action does not depend on direct killing or inhibition of the invading pathogen but rather on increasing physical or chemical barrier of the host plant. Elicited by a local infection, plants respond with a salicylic-dependent signalling cascade that leads to the systemic expression of a broad-spectrum and long-lasting disease resistance that is efficient against fungi, bacteria and viruses. In this chapter we are summarising the systemic acquired resistance and induced systemic resistance and its role and mechanism of action against phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, Motaalb FA, El-Sayedb M, Jogaiah S, Masayoshi S, Itod SI, Tran LSP (2016) Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Sci 246:128–138. https://doi.org/10.1016/j.plantsci.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  • Aldon D, Mbengue M, Mazars C, Galaud JP (2018) Calcium signalling in plant biotic interactions. Int J Mol Sci 19:665. https://doi.org/10.3390/ijms19030665

    Article  CAS  PubMed Central  Google Scholar 

  • Altenbach D, Robatzek S (2007) Pattern recognition receptors: from the cell surface to intracellular dynamics. The American Phytopathological Society. Mol Plant Microbe Interact 20(9):1031–1039. https://doi.org/10.1094/MPMI

    Article  CAS  PubMed  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Donald J, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baiyee B, Ito SI, Sunpapao A (2019) Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiol Mol Plant Pathol 106:96–101

    CAS  Google Scholar 

  • Bakar NA, Samsuddin NH, Shaharuddin NA, Azzeme AM, Laboh R, Badrun R, Nor AAM (2018) Establishment of systemic acquired resistance (SAR) in papaya by external salicylic acid application as a strategy to control dieback disease. Int J Curr Res 10(10):74440–74448

    Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97(2):239–243. https://doi.org/10.1094/PHYTO-97-2-0239

    Article  PubMed  Google Scholar 

  • Bernsdorff F, Doering AC, Gruner K, Schuck S, Bräutigam A, Zeier J (2015) Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and independent pathways. Plant Cell 28:102–129. https://doi.org/10.1105/tpc.15.00496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H (2018) Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana. Plant Cell Physiol 59(1):8–16

    CAS  PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    CAS  PubMed  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    CAS  PubMed  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    CAS  PubMed  Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, Kopplin PS, Borriss R, Hartmann A (2015) Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant Microbe Interact 28(9):984–995

    CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Agustín PG, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mani BM (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19(10):1062–1071

    CAS  PubMed  Google Scholar 

  • Deng XG, Zhu T, Zou LJ, Han XY, Zhou X, Xi DH, Zhang DW, Lin HH (2016) Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. Plant J 85:478–493

    CAS  PubMed  Google Scholar 

  • Ding P, Rekhter D, Ding Y, Feussner K, Busta L, Haroth S, Xu S, Li X, Jetter R, Feussner I, Zhang Y (2016) Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance. Plant Cell 28(10):2603–2615. https://doi.org/10.1105/tpc.16.00486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158

    CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    CAS  PubMed  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261(5122):754–756

    CAS  PubMed  Google Scholar 

  • Gautam JK, Nandi AK (2018) APD1, the unique member of Arabidopsis AP2 family influences systemic acquired resistance and ethylene-jasmonic acid signalling. Plant Physiol Biochem 133:92–99

    CAS  PubMed  Google Scholar 

  • Gruner K, Zeier T, Aretz C, Zeier J (2018) A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance. Plant J 94(6):1064–1082. https://doi.org/10.1111/tpj.13920

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo PM, Garcia JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:992

    Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux PJ (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. The American Phytopathological Society. Mol Plant Microbe Interact 16(10):851–858

    CAS  PubMed  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LP, Ito SI (2018) Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Mol Plant Pathol 19(4):870–882

    CAS  PubMed  Google Scholar 

  • Kinkema W, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Patel JS, Kumar G, Sarkar A, Singh HB, Sarma BK (2017) Studies on Pseudomonas and Trichoderma-mediated root exudation pattern in chickpea against Fusarium oxysporum f. sp. ciceris. J Agric Sci Technol 19:969–978

    Google Scholar 

  • Lamdan N, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of the biocontrol fungus Trichoderma virens co-cultured with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14(4):1054–1063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy NO, Harelac YM, Hailead ZM, Elada Y, Rav-Davida YE, Jurkevitch E, Katan J (2015) Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol 64:365–374

    Google Scholar 

  • Li Y, Zhang QQ, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of MicroRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim GH, Shine MB, de Lorenzo L, Lee JY, Kachroo A, Kachroo P (2016) Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19:541–549

    CAS  PubMed  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85(6):695–698

    Google Scholar 

  • Liu Y, Liu Q, Tang Y, Ding W (2019) NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes. Biochem Biophys Res Commun 508(3):940–945. https://doi.org/10.1016/j.bbrc.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR integrates signals from ethylene and Jasmonate pathways in plant defense. Plant Cell 15:165–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    CAS  PubMed  Google Scholar 

  • Luo J, Xia W, Cao P, Xiao Z, Zhang Y, Liu M, Zhan C, Wang N (2019) Integrated transcriptome analysis reveals plant hormones Jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar. Biomol Ther 9:12. https://doi.org/10.3390/biom9010012

    Article  CAS  Google Scholar 

  • Maiamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    Google Scholar 

  • Métraux JP, Signer H, Ryals J, Ward E, Benz MW, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    PubMed  Google Scholar 

  • Nair A, Kolet SP, Thulasiram HV, Bhargava S (2015) Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternate. Plant Biol 17(3):625–631. ISSN 1435-8603

    CAS  PubMed  Google Scholar 

  • Natarajan B, Kalsi HS, Godbole P, Malankar N, Thiagarayaselvam A, Siddappa S, Thulasiram HV, Chakrabarti SK, Banerjee AK (2018) Role of miRNA160 in potato-P. infestans interaction. https://doi.org/10.1093/jxb/ery025/4829605

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jone JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    CAS  PubMed  Google Scholar 

  • Nawrocka J, MaÅ‚olepsza U, Szymczak K, Szczech M (2017) Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. Protoplasma 255:359–373

    PubMed  PubMed Central  Google Scholar 

  • Niu D, Wang X, Wang Y, Song X, Wang J, Guo J, Zhao H (2016) Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochem Biophys Res Commun 469:120–125

    CAS  PubMed  Google Scholar 

  • Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA (2014) MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathog 10(10):e1004464

    PubMed  PubMed Central  Google Scholar 

  • Pandey D, Rajendran SRCK, Gaur M, Sajeesh PK, Kumar A (2016) Plant defense signaling and responses against necrotrophic fungal pathogens. J Plant Growth Regul 35:1159–1174

    CAS  Google Scholar 

  • Park CY, Do Heo W, Yoo JH, Lee JH, Kim MC, Chun HJ, Moon BC, Kim IH, Park HC, Choi MS, Ok HM, Cheong MS, Lee SM, Kim HS, Lee KH, Lim CO, Chung WS, Cho MJ (2004) Pathogenesis-related gene expression by specific calmodulin isoforms is dependent on NIM1, a key regulator of systemic acquired resistance. Mol Cells 18(2):207–213

    CAS  PubMed  Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Bart PHJ, Thomma BPHJ, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loona LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. American Society of Plant Physiologists. Plant Cell 10:1571–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Wees SCM, Ton J, Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Boil 4:535–544. ISSN 1435-8603

    CAS  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Gaudot ED, Gianinazzi S, Barea JM, Aguilar CA (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53(368):525–534

    CAS  PubMed  Google Scholar 

  • Raie SY, Ahmad AY, Ahmad HA (2017) Role of Salicyic acid in induction systemic acquired resistance in Cucurbita pepo plant against Zucchini yellow mosaic virus. Tishreen Univ J Res Sci Stud - Biol Sci Ser. 39(3):165–178

    Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    CAS  Google Scholar 

  • Ramos OF, Smith CM, Fritz AK, Madl RL (2017) Salicylic acid-mediated synthetic elicitors of systemic acquired resistance administered to wheat plants at jointing stage induced phenolics in mature grains. Crop Sci 57(6):3122. https://doi.org/10.2135/cropsci2015.11.0697

    Article  CAS  Google Scholar 

  • Rao GS, Reddy NNR, Surekha C (2015) Induction of plant systemic resistance in legumes Cajanus cajan, Vigna radiata, Vigna mungo against plant pathogens Fusarium oxysporum and Alternaria alternata – a Trichoderma viride mediated reprogramming of plant defense mechanism. Int J Recent Sci Res 6(5):4270–4280

    Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis 80(8):891

    Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross AF (1961) Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14:329–339

    CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    CAS  PubMed  Google Scholar 

  • Smirnova E, Marquis V, Poirier L, Aubert Y, Zumsteg J, Ménard R, Miesch L, Heitz T (2017) Jasmonic Acid Oxidase 2 (JAO2) hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection. Mol Plant 10(9):1159–1173. https://doi.org/10.1016/j.molp.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  • Somssich IE, Hahlbrock K (1998) Pathogen defence in plants – a paradigm of biological complexity. Trends Plant Sci 3(3):86–90

    Google Scholar 

  • Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou JM, Chai J (2013) Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624

    CAS  PubMed  Google Scholar 

  • Sun T, Busta L, Zhang Q, Ding P, Jetter R, Zhang Y (2018) TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g). New Phytol 217:344–354

    CAS  PubMed  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Goy PA, Métraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wittek F, Kanawati B, Wenig M, Hoffmann T, Franz-Oberdorf K, Schwab W, Schmitt-Kopplin P, Vlot AC (2015) Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. Mol Plant Pathol 16(6):616–622

    CAS  PubMed  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65(3):1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Nicole Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69(12):7343–7353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogurec A, Hyakumachib M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68:60–66

    CAS  PubMed  Google Scholar 

  • Yuan P, Jauregui E, Du L, Tanaka K, Poovaiah BW (2017) Calcium signatures and signaling events orchestrate plant–microbe interactions. Curr Opin Plant Biol 38:173–183

    CAS  PubMed  Google Scholar 

  • Zhang DW, Deng XG, Fu FQ, Lin HH (2015) Induction of plant virus defense response by brassinosteroids and brassinosteroid signaling in Arabidopsis thaliana. Planta 241:875–885

    CAS  PubMed  Google Scholar 

  • Zhang F, Ge H, Zhang F, Guo N, Wang Y, Chen L, Ji X, Li C (2016) Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol Biochem 100:64–74

    CAS  PubMed  Google Scholar 

  • Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35(7):345–351

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamle, M., Borah, R., Bora, H., Jaiswal, A.K., Singh, R.K., Kumar, P. (2020). Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. In: Hesham, AL., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V. (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_20

Download citation

Publish with us

Policies and ethics