Skip to main content
Log in

The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The new CaSn gene belonging to the snakin family in pepper (Capsicum annuum) encodes a novel antimicrobial peptide and responds to root-knot nematode (Meloidogyne spp.) infection. CaSn was isolated and cloned using suppression subtractive hybridization (SSH), and the gene was characterized and expressed in Escherichia coli. The CaSnakin protein encoded by CaSn is an antimicrobial peptide consisting of a signal peptide of 23 amino acid residues, an acidic peptide of 14 amino acid residues (pI = 4.18), and a mature protein of 66 amino acid residues that corresponds to a molecular mass of 7.03 kDa. The peptide sequence has 12 conserved cysteines forming six disulfide bridges. CaSnakin is highly homologous to the peptide snakin-2 (StSN2) of potato (Solanum tuberosum); CaSnakin also shows 88.5% identity to StSN2. Phylogenetic tree analysis indicated that the CaSn gene belongs to subfamily II of the snakin family. Real-time quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) results showed that the CaSn gene was induced and expressed evidently by root-knot nematode infection; CaSn is also expressed in buds, stems, roots and leaves. The CaSnakin protein expressed in E. coli showed strong antimicrobial activity against free-living nematodes (Caenorhabditis elegans) and root-knot nematodes in vitro. In addition, the virus-induced gene silencing (VIGS) results revealed that the CaSn gene participates in the defense of plants against nematodes. In conclusion, the CaSn gene can be activated by nematode infections, and it plays an important role in host defense. As far as we know, this is the first investigation reporting the role of a snakin gene in the defense of plants against nematodes. In addition, the CaSn gene is the first gene of the snakin family isolated from pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Danchin, E. G., Deleury, E., et al. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 909–915.

    Article  PubMed  CAS  Google Scholar 

  • Almasia, N. I., Bazzini, A. A., Hopp, H. E., & Vazquez-Rovere, C. (2008). Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Molecular Plant Pathology, 9, 329–338.

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo, M., Segura, A., Moreno, M., Lopez, G., Garcia-Olmedo, F., & Molina, A. (2002). Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiology, 128, 951–961.

    Article  PubMed  CAS  Google Scholar 

  • Chan, Y. L., Yang, A. H., Chen, J. T., Yeh, K. W., & Chan, M. T. (2010). Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Reports, 29, 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Chen, K. C., Lin, C. Y., Kuan, C. C., Sung, H. Y., & Chen, C. S. (2002). A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. Journal of Agriculture and Food Chemistry, 50, 7258–7263.

    Article  CAS  Google Scholar 

  • Chen, Y. Y., Lin, Y. M., Chao, T. C., Wang, J. F., Liu, A. C., Ho, F. I., et al. (2009). Virus-induced gene silencing reveals the involvement of ethylene, salicylic acid and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiologia Plantarum, 136, 324–335.

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta, S., Wood, J., & Hicks, J. (1983). A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1, 19–21.

    Article  CAS  Google Scholar 

  • Fery, R. L., & Thies, J. A. (1997). Evaluation of Capsicum chinense Jacq. cultigens for resistance to the southern root-knot nematode. HortScience, 32, 923–926.

    Google Scholar 

  • Garcia-Olmedo, F., Molina, A., Alamillo, J. M., & Rodriguez-Palenzuela, P. (1998). Plant defense peptides. Biopolymers, 47, 479–491.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Olmedo, F., Rodriguez-Palenzuela, P., Molina, A., Alamillo, J. M., Lopez-Solanilla, E., Berrocal-Lobo, M., et al. (2001). Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Letters, 498, 219–222.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. Y., Park, S. C., Hwang, I., Cheong, H., Nah, J. W., Hahm, K. S., et al. (2009). Protease inhibitors from plants with antimicrobial activity. International Journal of Molecular Science, 10, 2860–2872.

    Article  CAS  Google Scholar 

  • Kovalskaya, N., & Hammond, R. W. (2009). Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expression and Purification, 63, 12–17.

    Article  PubMed  CAS  Google Scholar 

  • Li, X. Q., Wei, J. Z., Tan, A., & Aroian, R. V. (2007). Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnology Journal, 5, 455–464.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, C. J., Devlin, P., Urwin, P. E., & Atkinson, H. J. (1999). Parasitic nematodes, proteinases and transgenic plants. Parasitology Today, 15, 414–417.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Schiff, M., & Dinesh-Kumar, S. P. (2002). Virus-induced gene silencing in tomato. The Plant Journal, 31, 777–786.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Solanilla, E., Gonzalez-Zorn, B., Novella, S., Vazquez-Boland, J. A., & Rodriguez-Palenzuela, P. (2003). Susceptibility of Listeria monocytogenes to antimicrobial peptides. FEMS Microbiology Letters, 226, 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Mao, Z. C., Xie, B. Y., Yang, Y. H., Feng, D. X., Feng, L. X., & Yang, Z. W. (2007). Analysis of early expression genes resistance to root knot nematode in N gene pepper by SSH. Acta Horticulturae Sinica, 34, 629–636 (in Chinese).

    CAS  Google Scholar 

  • Marroquin, L. D., Elyassnia, D., Griffitts, J. S., Feitelson, J. S., & Aroian, R. V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 155, 1693–1699.

    PubMed  CAS  Google Scholar 

  • McCarter, J. P. (2009). Molecular approaches toward resistance to plant-parasitic nematodes. In R. H. Berg and C. G. Taylor (Eds.), Cell biology of plant nematode parasitism. Plant Cell Monographs, 15, 239–267.

  • Pegard, A., Brizzard, G., Fazari, A., Soucaze, O., Abad, P., & Djian-Caporalino, C. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology, 95, 158–165.

    Article  PubMed  CAS  Google Scholar 

  • Plate, N. A., Valuev, L. I., Valueva, T. A., & Chupov, V. V. (1993). Biospecific haemosorbents based on proteinase inhibitor. I. Synthesis and properties. Biomaterials, 14, 51–56.

    CAS  Google Scholar 

  • Segura, A., Moreno, M., Madueno, F., Molina, A., & Garcia-Olmedo, F. (1999). Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant-Microbe Interactions, 12, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Shai, Y. (2002). From innate immunity to de-novo designed antimicrobial peptides. Current Pharmaceutical Design, 8, 715–725.

    Article  PubMed  CAS  Google Scholar 

  • Silverstein, K. A., Moskal, W. A., Jr., Wu, H. C., Underwood, B. A., Graham, M. A., Town, C. D., et al. (2007). Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. The Plant Journal, 51, 262–280.

    Article  PubMed  CAS  Google Scholar 

  • Theis, J. A., & Fery, R. L. (2002). Host plant resistance as an alternative to methyl bromide for managing Meloidogyne incognita in pepper. Journal of Nematology, 34, 374–377.

    PubMed  Google Scholar 

  • Thevissen, K., Ferket, K. K., Francois, I. E., & Cammue, B. P. (2003). Interactions of antifungal plant defensins with fungal membrane components. Peptides, 24, 1705–1712.

    Article  PubMed  CAS  Google Scholar 

  • Urwin, P. E., Atkinson, H. J., Waller, D. A., & McPherson, M. J. (1995). Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. The Plant Journal, 8, 121–131.

    Article  PubMed  CAS  Google Scholar 

  • Urwin, P. E., Lilley, C. J., McPherson, M. J., & Atkinson, H. J. (1997). Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. The Plant Journal, 12, 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Valentine, T., Shaw, J., Blok, V., Phillips, M., Oparka, K., & Lacomme, C. (2004). Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiology, 136, 3999.

    Article  PubMed  CAS  Google Scholar 

  • Valueva, T. A., Revina, T. A., Gvozdeva, E. L., Gerasimova, N. G., & Ozeretskovskaia, O. L. (2003). Role of proteinase inhibitors in potato protection. Bioorganic Khimica, 29, 499–504.

    CAS  Google Scholar 

  • Vishnudasan, D., Tripathi, M. N., Rao, U., & Khurana, P. (2005). Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Research, 14, 665–675.

    Article  PubMed  CAS  Google Scholar 

  • Vivanco, J. M., Savary, B. J., & Flores, H. E. (1999). Characterization of two novel type I ribosome-inactivating proteins from the storage roots of the Andean crop Mirabilis expansa. Plant Physiology, 119, 1447–1456.

    Article  PubMed  CAS  Google Scholar 

  • Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C., et al. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America, 100, 2760–2765.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2009CB11900), the National Natural Science Foundation of China (30971905, 30900925), Special Fund for Agro-scientific Research in the Public Interest (2011303018) and Modern Agro-industry Technology Research System. The authors would like to thank D. P. Zhang and Massimo Pugliese (University of Torino) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyan Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Z., Zheng, J., Wang, Y. et al. The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica 39, 151–164 (2011). https://doi.org/10.1007/s12600-011-0149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-011-0149-5

Keywords

Navigation