Skip to main content
Log in

Thermal degradation study of poly(ethylene-co-methyl methacrylate) nanospheres synthesized via miniemulsion polymerization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal stability and decomposition kinetics of poly(ethylene-co-methyl methacrylate) nanospheres synthesized via miniemulsion polymerization were investigated by thermogravimetric analysis under non-isothermal condition. Decomposition patterns of the copolymer spheres were varied depending on the ethylene feed pressure. The multivariate nonlinear regression analyses were performed to establish the degradation mechanisms, kinetic model, and the corresponding kinetic triplets. The activation energy for the decomposition of copolymers was determined by Friedman and Flynn–Wall–Ozawa methods and found to be in the range of 170–240 kJ mol−1. The kinetic parameters as well as decomposition mechanism are dependent on composition of copolymer. The results revealed the changing mechanism with changed feed pressure, responsible for the decomposition of the copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abbas-Abadi MS. The effect of process and structural parameters on the stability, thermo-mechanical and thermal degradation of polymers with hydrocarbon skeleton containing PE, PP, PS, PVC, NR, PBR and SBR. J Therm Anal Calorim. 2021;143:2867–82.

    Article  CAS  Google Scholar 

  3. Schulz DN, Patil AO. Functional polymers: an overview. ACS Symp Ser. 1998;704:1–14.

    Article  CAS  Google Scholar 

  4. Boffa LS, Novak BM. Copolymerization of polar monomers with olefins using transition-metal complexes. Chem Rev. 2000;100:1479–94.

    Article  CAS  PubMed  Google Scholar 

  5. Kermagoret A, Debuigne A, Jérôme C, Detrembleur C. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization. Nat Chem. 2014;6:179–87.

    Article  CAS  PubMed  Google Scholar 

  6. Baruah U, Borphukan S, Saikia M, Saikia PJ, Baruah SD. Non-isothermal decomposition kinetics of in-chain functionalized poly (MMA-co-ethylene). J Therm Anal Calorim. 2021;2021(143):3093–105.

    Article  Google Scholar 

  7. Hutley TJ, Ouederni M. Polyolefins-the history and economic impact. In: Al-Ali AlMa’adeed M, Krupa I, editors. Polyolefin compounds and materials. Springer series on polymer and composite materials. Basel: Springer; 2016. p. 13–50.

    Google Scholar 

  8. Tasdelen MA, Kahveci MU, Yagci Y. Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci. 2011;36:455–567.

    Article  CAS  Google Scholar 

  9. Sugimoto R, Kaneko H, Saito J, Kawahara N, Matsuo S, Matsugi T. Controlled radical polymerization with polyolefin macroinitiator: a convenient and versatile approach to polyolefin based block and graft copolymers. Polym Bull. 2014;71:1421–31.

    Article  CAS  Google Scholar 

  10. Nicolay R, Kwak Y, Matyjaszewski K. Dibromotrithiocarbonate iniferter for concurrent ATRP and RAFT polymerization Effect of monomer, catalyst, and chain transfer agent structure on the polymerization mechanism. Macromolecules. 2008;41:4585–96.

    Article  CAS  Google Scholar 

  11. Boaen NK, Hillmyer MA. Post-polymerization functionalization of polyolefins. Chem Soc Rev. 2005;34:267–75.

    Article  CAS  PubMed  Google Scholar 

  12. Venkatesh R, Klumperman B. Olefin copolymerization via controlled radical polymerization: copolymerization of methyl methacrylate and 1-octene. Macromolecules. 2004;37:1226–33.

    Article  CAS  Google Scholar 

  13. Mecking S, Johnson LK, Wang L, Brookhart M. Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. J Am Chem Soc. 1998;120:888–99.

    Article  CAS  Google Scholar 

  14. Tian G, Boone HW, Novak BM. Neutral palladium complexes as catalysts for olefin−methyl acrylate copolymerization: a cautionary tale. Macromolecules. 2001;34:7656–63.

    Article  CAS  Google Scholar 

  15. Baruah U, Saikia M, Assanvo EF, Borphukan S, Phukan L, Gautam A, Baruah SD. Synthesis and thermal analysis of poly (methyl methacrylate) oligomer functionalized polyethylene block copolymer. Polym Bull. 2017;74:2137–58.

    Article  CAS  Google Scholar 

  16. Bauers FM, Chowdhry MM, Mecking S. Catalytic polymerization of ethylene in aqueous emulsion with a simple in situ catalyst. Macromolecules. 2003;36:6711–5.

    Article  CAS  Google Scholar 

  17. Bauers FM, Mecking S. Aqueous homo-and copolymerization of ethylene by neutral nickel (II) complexes. Macromolecules. 2001;34:1165–71.

    Article  CAS  Google Scholar 

  18. Bauers FM, Mecking S. High molecular mass polyethylene aqueous latexes by catalytic polymerization. Angew Chem Int Ed. 2001;40:3020–2.

    Article  CAS  Google Scholar 

  19. Soula R, Saillard B, Spitz R, Claverie J, Llaurro MF, Monnet C. Catalytic copolymerization of ethylene and polar and nonpolar α-olefins in emulsion. Macromolecules. 2002;35:1513–23.

    Article  CAS  Google Scholar 

  20. Soula R, Novat C, Tomov A, Spitz R, Claverie J, Drujon X, Malinge J, Saudemont T. Catalytic polymerization of ethylene in emulsion. Macromolecules. 2001;34:2022–6.

    Article  CAS  Google Scholar 

  21. Tomov A, Broyer JP, Spitz R. Emulsion polymerization of ethylene in water medium catalysed by organotransition metal complexes. Macromol Symp. 2000;150:53–8.

    Article  CAS  Google Scholar 

  22. Guo J, Choi KY, Schork FJ. Miniemulsion copolymerization of ethylene and vinyl acetate. Macromol React Eng. 2009;3:412–8.

    Article  CAS  Google Scholar 

  23. Ingale RP, Jagtap RN, Adivarekar RV. Effect of molecular weight on performance properties of pressure-sensitive adhesive of poly (2-ethylhexyl acrylate) synthesized by RAFT-mediated miniemulsion polymerization. J Adhesion. 2016;92:236–56.

    Article  CAS  Google Scholar 

  24. Zhang G, Zhang Q, Wang Q, Zhan X, Chen F. Synthesis and properties of gradient copolymers of butyl methacrylate and fluorinated acrylate via RAFT miniemulsion copolymerizations. J Appl Polym Sci. 2016;133:42936.

    Google Scholar 

  25. Liang JZ. Mechanical properties and morphology of polypropylene/poly (ethylene-co-octene) blends. J Polym Environ. 2012;20:872–8.

    Article  CAS  Google Scholar 

  26. Yang HS, Kiziltas A, Gardner DJ. Thermal analysis and crystallinity study of cellulose nanofibril-filled polypropylene composites. J Therm Anal Calorim. 2013;113:673–82.

    Article  CAS  Google Scholar 

  27. Benarbia A, Elidrissi A, Ganetri I, Touzani R. Synthesis, characterization and thermal degradation kinetics of copolyesters. J Mater Environ Sci. 2014;5(4):1262–79.

    Google Scholar 

  28. Groch P, Dziubek K, Czaja K, Sacher-Majewska B. Thermal behavior of ethylene copolymers with di-and tri-alkenylsilsesquioxane comonomers synthesized by post-metallocene catalysts. J Therm Anal Calorim. 2020;142:1447–56.

    Article  CAS  Google Scholar 

  29. Jakić M, Jakić J, Andričić B, Martinac V. Thermal degradation of polyethylene oxide—effect of magnesium hydroxide addition. J Therm Anal Calorim. 2022;10:1–10.

    Google Scholar 

  30. Málek J, Criado JM. A simple method of kinetic model discrimination. Part 1. Analysis of differential non-isothermal data. Thermochim Acta. 1994;236:187–97.

    Article  Google Scholar 

  31. Vimalathithan PK, Barile C, Vijayakumar CT. Investigation of kinetic triplets for thermal degradation of thermally cured vinyl ester resin systems and lifetime predictions. J Therm Anal calorim. 2018;133:881–91.

    Article  CAS  Google Scholar 

  32. Budrugeac P. Thermokinetic study of the thermo-oxidative degradation of a composite epoxy resin material. Rev Roum Chim. 2013;58:371–9.

    CAS  Google Scholar 

  33. Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009;88:1024–30.

    Article  CAS  Google Scholar 

  34. Saikia M, Borphukan S, Baruah U, Gautam A, Saikia PJ, Baruah SD. Poly(ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study. J Therm Anal Calorim. 2017;131:1517–26.

    Article  Google Scholar 

  35. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  36. Atkins P, Paula J. Physical chemistry. 9th ed. New York: WH Freeman and Company; 2010.

    Google Scholar 

  37. Brown ME. Introduction to thermal analysis. 2nd ed. Dodrecht: Kluwer Academic Publisher; 2001.

    Google Scholar 

  38. Freidman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Article  Google Scholar 

  39. Mothe CG, Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall iso-conversional methods. J Therm Anal Calorim. 2013;112:497–505.

    Article  Google Scholar 

  40. Cui HW, Jiu JT, Sugahara T, Nagao S, Suganuma K, Uchida H, Schroder KT. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives. J Therm Anal Calorim. 2015;119:425–33.

    Article  CAS  Google Scholar 

  41. Jitumoni B, Dixit SA, Pradeep PR, Ravindra K, Das SK, Christopher J, Sau M, Kapur GS, Ramakumar SS. Study of thermal cracking kinetics and co-processing of biocrude in thermal residual upgradation unit for converting ‘waste to energy.’ J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-11941-8.

    Article  Google Scholar 

  42. Ozawa TA. New method of analyzing thermogravimetric data. Bull Chem Soc. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  43. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  44. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advance diso-conversional methods: complex mechanisms and isothermal predicted conversion-timecurves. Chemometr Intell Lab Syst. 2009;96:219–26.

    Article  CAS  Google Scholar 

  45. Tankov I, Yankova R, Mitkova M, Stratiev D. Non-isothermal decomposition kinetics of pyridinium nitrate under nitrogen atmosphere. Thermochim Acta. 2018;665:85–91.

    Article  CAS  Google Scholar 

  46. Baruah U, Gautam A, Saikia M, Borphukan S, Saikia PJ, Baruah SD. Monodisperse copolymer nanosphere assembly by miniemulsion polymerization. Eur Polym J. 2017;96:111–8.

    Article  CAS  Google Scholar 

  47. Zhang Y, Li H, Dong JY, Hu Y. Facile synthesis of chain end functionalized polyethylenes via epoxide ring-opening and thiolene addition click chemistry. Polym Chem. 2014;5:105–15.

    Article  CAS  Google Scholar 

  48. Balamurugan A, Kannan S, Selvaraj V, Rajeswari S. Development and spectral characterization of poly (methyl methacrylate)/hydroxyapatite composite for biomedical applications. Trends Biomater Artif Organs. 2004;18:41–5.

    Google Scholar 

  49. Duan G, Zhang C, Li A, Yang X, Lu L, Wang X. Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res Lett. 2008;3:118–22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E. Effects of weak linkages on the thermal and oxidative degradation of Poly(methyl methacrylates). Macromolecules. 1986;19:2160–8.

    Article  CAS  Google Scholar 

  51. Skrdla PJ. Dispersive kinetic models predict variation of the activation energy with extent of conversion observed experimentally in iso-conversional data. Thermochim Acta. 2014;578:68–73.

    Article  CAS  Google Scholar 

  52. Chambreau SD, Popolan-Vaida DM, Vaghjiani GL, Leone SR. Catalytic decomposition of hydroxyl ammonium nitrate ionic liquid: enhancement of NO formation. J Phys Chem Lett. 2017;8:2126–30.

    Article  CAS  PubMed  Google Scholar 

  53. Quan C, Li A, Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Manag. 2009;29:2353–60.

    Article  CAS  PubMed  Google Scholar 

  54. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  55. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computation son thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  56. Vyazovkin S. Iso-conversional kinetics of thermally stimulated processes. Heidelberg: Springer; 2015. p. 34–6.

    Book  Google Scholar 

  57. Gao Z, Kaneko T, Hou D, Nakada M. Kinetics of thermal degradation of poly(methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate. Polym Degrad Stab. 2004;84:399–403.

    Article  CAS  Google Scholar 

  58. Peterson JD, Vyazovkin S, Wigh CA. Kinetics of the thermal andthermo-oxidative degradation of polystyrene, polyethylene andpoly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  59. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  60. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sect. 1966;70A:487–523.

    Article  Google Scholar 

  61. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  62. Budrugeac P. Application of model-free and multivariate non-linear regression methods for evaluation of the thermo-oxidative endurance of a recent manufactured parchment. J Therm Anal Calorim. 2009;97:443–51.

    Article  CAS  Google Scholar 

  63. Jain AA, Mehra A, Ranade VV. Processing of TGA data: analysis of isoconversional and model fitting methods. Fuel. 2016;165:49–498.

    Article  Google Scholar 

  64. Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs. Flynn–Wall–Ozawa method. J Chem Phys. 2013;117:10162–9.

    Article  CAS  Google Scholar 

  65. Nikolaidis AK, Achilias DS. Thermal degradation kinetics and viscoelastic behaviour of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers. 2018;10:491–506.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director, CSIR-North East Institute of Science & Technology, Jorhat, for his permission to publish the results and CSIR for financial support from CSIR-XII FYP Network Project CSC-0206. UB also wishes to thank CSIR for award of CSIR-Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash J. Saikia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, U., Dutta, P.P., Mohan, B. et al. Thermal degradation study of poly(ethylene-co-methyl methacrylate) nanospheres synthesized via miniemulsion polymerization. J Therm Anal Calorim 148, 6085–6095 (2023). https://doi.org/10.1007/s10973-023-12162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12162-9

Keywords

Navigation