Skip to main content
Log in

The effect of process and structural parameters on the stability, thermo-mechanical and thermal degradation of polymers with hydrocarbon skeleton containing PE, PP, PS, PVC, NR, PBR and SBR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Many studies have been done on the stability, thermo-mechanical degradation and pyrolysis of polymers with hydrocarbon skeleton. According to the main structure, side groups, with and without double bond in the structure, polymer has different responses in reference to the thermo-mechanical and thermal degradations. The polymers in extruder are faced with thermo-mechanical degradation while with appropriate stability against thermo-mechanical degradation, the shelf time of the final products increases, and the polymeric wastes are reduced. On the other hand, the structural and process parameters can significantly affect the resulting pyrolysis products as suitable process to reduce the non-recyclable polymers. Also the literature review in this field containing reactor and TG studies shows that the chemical bonds and the related degradation mechanisms can affect the quality and quantity of the pyrolytic products obviously. For this purpose, the effects of different molecular specifications, additives and related effective parameters on the thermal stability and the thermo-mechanical degradation of plastics are considered. Meanwhile, the mechanisms of degradation, the share of each mechanism, the related products under different structural and process parameters and the needed activation energy for all of the studied polymers are investigated to reduce the polymeric wastes sent to landfills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sauter DW, Taoufik M, Boisson Ch. Polyolefins a success story. Polymers. 2017;9:185.

    Google Scholar 

  2. Hutley TJ, Ouederni M. Polyolefins—the history and economic impact. In: Al-Ali AlMa'adeed M, Krupa I, editors. Polyolefins compounds and materials. Springer series on polymer and composite materials. Cham: Springer; 2016. p. 13–50.

    Google Scholar 

  3. Stalzer MM, Delferro M, Marks TJ. Supported single-site organometallic catalysts for the synthesis of high-performance polyolefins. Catal Lett. 2014;145:3–14.

    Google Scholar 

  4. Al-Ali AlMa'adeed M, Krupa I. Introduction. In: Al-Ali AlMa'adeed M, Krupa I, editors. Polyolefin compounds and materials. Springer Series on Polymer and Composite Materials. Cham: Springer; 2016. p. 1–11.

    Google Scholar 

  5. Shubhra QTH, Alam AKMM, Quaiyyum MA. Mechanical properties of polypropylene composites: a review. J Thermoplast Compos Mater. 2013;26:362–91.

    Google Scholar 

  6. Hassan A, Akbari A, Hing NK, Ratnam CT. Mechanical and thermal properties of ABS/PVC composites: effect of particles size and surface treatment of ground calcium carbonate. Polym Plas Technol Eng. 2012;51:473–9.

    CAS  Google Scholar 

  7. Hopewell J, Dvorak R, Kosior E. Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond B Biol Sci. 2009;364:2115–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Akovali G. Plastics, rubber and health. Shawbury: iSmithers Rapra Publishing; 2007.

    Google Scholar 

  9. Ghani MHA, Salleh MN, Chen RS, Ahmad S, Hamid MRY, Hanafi I, Royan NRR. The effects of antioxidants content on mechanical properties and water absorption behaviour of biocomposites prepared by single screw extrusion process. J Polym. 2014. https://doi.org/10.1155/2014/243078.

    Article  Google Scholar 

  10. Dopico-García MS, López-Vilariñó JM, González-Rodríguez MV. Antioxidant content of and migration from commercial polyethylene, polypropylene, and polyvinyl chloride packages. J Agric Food Chem. 2007;55:3225–311.

    PubMed  Google Scholar 

  11. Ojeda T, Freitas A, Birck K, Dalmolin E, Jacques R, Bento F, Camargo F. Degradability of linear polyolefins under natural weathering. Polym Degrad Stab. 2011;96:703–7.

    CAS  Google Scholar 

  12. Lee U, Han J, Wang M. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J Cleaner Prod. 2017;166:335–42.

    CAS  Google Scholar 

  13. Jr NJ, Silva AA, Marques MRC. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology. Waste Manag. 2015;36:166–76.

  14. Kordoghli S, Khiari B, Paraschiv M, Zagrouba F, Tazerout M. Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor. Waste Manag. 2017;67:288–97.

    CAS  PubMed  Google Scholar 

  15. Kumar PS, Bharathikumar M, Prabhakaran C, Vijayan S, Ramakrishnan K. Conversion of waste plastics into low-emissive hydrocarbon fuels through catalytic depolymerization in a new laboratory scale batch reactor. Int J Energy Environ Eng. 2017;8:167–73.

    Google Scholar 

  16. Gaurh P, Pramanik H. Production of benzene/toluene/ethyl benzene/xylene (BTEX) via multiphase catalytic pyrolysis of hazardous waste polyethylene using low cost fly ash synthesized natural catalyst. Waste Manag. 2018;77:114–30.

    CAS  PubMed  Google Scholar 

  17. Coelho A, Costa L, Marques MM, Fonseca IM, Lemos MANDA, Lemos F. The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A. 2012;413–414:183–91.

    Google Scholar 

  18. Gaurh P, Pramanik H. A novel approach of solid waste management via aromatization using multiphase catalytic pyrolysis of waste polyethylene. Waste Manag. 2018;71:86–96.

    CAS  PubMed  Google Scholar 

  19. Abbas-Abadi MS, Haghighi MN, Yeganeh H. The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. J Anal Appl Pyrolysis. 2012;95:198–204.

    CAS  Google Scholar 

  20. Funke A, Henrich E, Dahmen N, Sauer J. Dimensional analysis of auger-type fast pyrolysis reactors. Energy Technol. 2017;5:119–29.

    Google Scholar 

  21. Kalargaris I, Tian G, Gu S. The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy. 2017;131:179–85.

    CAS  Google Scholar 

  22. Pei T, Xiao-bo M, De-zhen Ch, Hai W. Pyrolysis of waste plastics: effect of heating rate on product yields and oil properties. Adv Mater Res. 2013;666:1–10.

    Google Scholar 

  23. Chandrasekaran SR, Kunwar B, Moser BR, Rajagopalan N, Sharma BK. Catalytic thermal cracking of postconsumer waste plastics to fuels. 1. Kinetics and optimization. Energy Fuels. 2015;29:6068–77.

    CAS  Google Scholar 

  24. Abbas-Abadi MS, McDonald AG, Haghighi MN, Yeganeh H. Estimation of pyrolysis product of LDPE degradation using different process parameters in a stirred reactor. Polyolefins J. 2015;2:39–47.

    Google Scholar 

  25. Abbas-Abadi MS, Haghighi MN. The consideration of different effective zeolite based catalysts and heating rate on the pyrolysis of Styrene Butadiene Rubber (SBR) in a stirred reactor. Energy Fuels. 2017;31:12358–63.

    Google Scholar 

  26. Salmasi SS, Abbas-Abadi MS, Haghighi MN, Abedini H. The effect of different zeolite based catalysts on the pyrolysis of polybutadiene rubber. Fuel. 2015;160:544–8.

    CAS  Google Scholar 

  27. Yu J, Sun L, Ma Ch, Qiao Y, Yao H. Thermal degradation of PVC: a review. Waste Manag. 2016;48:300–14.

    CAS  PubMed  Google Scholar 

  28. Abbas-Abadi MS, Haghighi MN, Yeganeh H, McDonald AG. Evaluation of pyrolysis process parameters on polypropylene degradation products. J Anal Appl Pyrolysis. 2014;109:272–7.

    CAS  Google Scholar 

  29. Sarker M, Rashid MM, Molla M, Rahman MS. Thermal conversion of waste plastics (HDPE, PP and PS) to produce mixture of hydrocarbons. Amer J Env Eng sci. 2012;2:128–36.

    Google Scholar 

  30. Wangi J-L, Wang L-L. Catalytic pyrolysis of municipal plastic waste to fuel with nickel-loaded silica–alumina catalysts. Energy Sources Part A. 2011;33:1940–8.

    Google Scholar 

  31. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017. https://doi.org/10.1126/sciadv.1700782.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dostál J, Kašpárková V, Zatloukal M, Muras J, Šimek L. Influence of the repeated extrusion on the degradation of polyethylene. Structural changes in low density polyethylene. Eur Polym J. 2008;44:2652–8.

    Google Scholar 

  33. Hinsken H, Moss S, Pauquet J-R, Zweifel H. Degradation of polyolefins during melt processing. Polym Degrad Stab. 1991;34:279–93.

    CAS  Google Scholar 

  34. Delva L, Ragaert K, Degrieck J, Cardon L. The effect of multiple extrusions on the properties of montmorillonite filled polypropylene. Polymers. 2014;6:2912–27.

    Google Scholar 

  35. Andersson T, Stålbom B, Wesslén B. Degradation of polyethylene during extrusion II. Degradation of low-density polyethylene, linear low-density polyethylene, and high-density polyethylene in film extrusion. J Appl Polym Sci. 2004;3:1525–37.

    Google Scholar 

  36. Massa S, Zweifel H. Degradation and stabilization of high density polyethylene during multiple extrusions. Polym Degrad Stab. 1989;25:217–45.

    Google Scholar 

  37. Park JW, Oh SCh, Lee HP, Kim HT, Yoo KO. Kinetic analysis of thermal decomposition of polymer using a dynamic model. Korean J Chem Eng. 2000;17:489–96.

    CAS  Google Scholar 

  38. Abbas-Abadi MS, Haghighi MN, Yeganeh H. Effect of the melt flow index and melt flow rate on the thermal degradation kinetics of commercial polyolefins. J Appl Polym Sci. 2012;126:1739–45.

    CAS  Google Scholar 

  39. Kebritchi A, Nekoomanesh M, Mohammadi F, Khonakdar HA. The interrelationships between microstructure and melting, crystallization and thermal degradation behaviors of fractionated ethylene/1-butene copolymer. Iran Polym J. 2015;24:267–77.

    CAS  Google Scholar 

  40. Kebritchi A, Nekoomanesh M, Mohammadi F, Khonakdar HA. The role of 1-hexene comonomer content in thermal behavior of medium density polyethylene (MDPE) synthesized using Phillips catalyst. Polyolefins J. 2014;1:117–29.

    Google Scholar 

  41. Green AES, Sadrameli SM. Analytical representations of experimental polyethylene pyrolysis yields. J Anal Appl Pyrolysis. 2004;72:329–35.

    CAS  Google Scholar 

  42. Mastral FJ, Esperanza E, Garcıa P, Juste M. Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. J Anal Appl Pyrolysis. 2002;63:1–15.

    CAS  Google Scholar 

  43. Abbas-Abadi MS, Haghighi MN, Yeganeh H. Evaluation of pyrolysis product of virgin High Density Polyethylene degradation using different process parameters in a stirred reactor. Fuel Process Technol. 2012;109:90–5.

    Google Scholar 

  44. Bagri R, Williams PT. Catalytic pyrolysis of polyethylene. J Anal Appl Pyrolysis. 2002;63:29–41.

    CAS  Google Scholar 

  45. Marcilla A, Beltrán MI, Navarro R. Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Appl Catal B. 2009;86:78–86.

    CAS  Google Scholar 

  46. Agullo J, Kumar N, Berenquer D, Kubicka D, Marcilla A, Gómez A, Salmi T, Murzin DY. Catalytic pyrolysis of low density polyethylene over H-β, H-Y, H-Mordenite, and H-Ferrierite zeolite catalysts: Influence of acidity and structures. Kinet Catal. 2007;48:535–40.

    CAS  Google Scholar 

  47. Elordi G, Olazar M, Lopez G, Castaño P, Bilbao J. Role of pore structure in the deactivation of zeolites (HZSM-5, Hβ and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor. Appl Catal B. 2011;102:224–31.

    CAS  Google Scholar 

  48. Artetxe M, Lopez G, Amutio M, Elordi G, Bilbao J, Olazar M. Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity. Ind Eng Chem Res. 2013;52:10637–45.

    CAS  Google Scholar 

  49. Manos G, Garforth A, Dwyer J. Catalytic degradation of high-density polyethylene over different zeolitic structures. Ind Eng Chem Res. 2000;39:1198–202.

    CAS  Google Scholar 

  50. Akubo K, Nahil MA, Williams PT. Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. J Energy Ins. 2017. https://doi.org/10.1016/j.joei.2017.10.009.

    Article  Google Scholar 

  51. Williams PT, Slaney E. Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures. Resour Conserv Recycl. 2007;51:754–69.

    Google Scholar 

  52. Chen D, Yin L, Wang H, He P. Reprint of: Pyrolysis technologies for municipal solid waste: a review. Waste Manag. 2015;37:116–36.

    PubMed  Google Scholar 

  53. Abbas-Abadi MS, Haghighi MN, Yeganeh H, Bozorgi B. The effect of melt flow index, melt flow rate, and particle size on the thermal degradation of commercial high density polyethylene powder. J Therm Anal Calorim. 2013;114:1333–9.

    Google Scholar 

  54. Chen HB, Karger-Kocsis J, Wu JS, Varga J. Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer. 2002;43:6505–14.

    CAS  Google Scholar 

  55. Canevarolo SV. Chain scission distribution function for polypropylene degradation during multiple extrusions. Polym Degrad Stab. 2000;70:71–6.

    CAS  Google Scholar 

  56. Tochacek J, Jancar J. Processing degradation index (PDI) – A quantitative measure of processing stability of polypropylene. Polym Test. 2012;31:1115–20.

    CAS  Google Scholar 

  57. Oliveira RJB, Forrester AMS, Marques MFV. In-reactor stabilization of poly(propylene) with natural antioxidants. Macromol Symp. 2011;299(300):215–9.

    Google Scholar 

  58. Tochacek J, Jancar J, Kalfus J, Zborilova P, Buran Z. Degradation of polypropylene impact-copolymer during processing. Polym Degrad Stab. 2008;93:770–5.

    CAS  Google Scholar 

  59. Bhaskar T, Tanabe M, Muto A, Sakata Y, Liu C-F, Chen M-D, Chao CC. Analysis of chlorine distribution in the pyrolysis products of poly(vinylidene chloride) mixed with polyethylene, polypropylene or polystyrene. Polym Degrad Stab. 2005;89:38–42.

    CAS  Google Scholar 

  60. Gamlin C, Dutta N, Roy-Choudhury N, Kehoe D, Matisons J. Influence of ethylene–propylene ratio on the thermal degradation behaviour of EPDM elastomers. Thermochim Acta. 2001;367–368:185–93.

    Google Scholar 

  61. Jung S-H, Cho M-H, Kang B-S, Kim J-S. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process Technol. 2010;91:277–84.

    CAS  Google Scholar 

  62. Ciliz NK, Ekinci E, Snape CE. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene. Waste Manag. 2004;24:173–81.

    Google Scholar 

  63. Kayacan I, Dogan OM. Pyrolysis of low and high density polyethylene. Part I: non-isothermal pyrolysis kinetics. Energy Sources Part A. 2008;30:385–91.

    CAS  Google Scholar 

  64. Lee K-H, Shin D-H. A comparative study of liquid product on non-catalytic and catalytic degradation of waste plastics using spent FCC catalyst. Korean J Chem Eng. 2006;23:209–15.

    CAS  Google Scholar 

  65. Ahmad I, Khan MI, Khan H, Ishaq M, Tariq R, Gul K, Ahmad W. Pyrolysis study of polypropylene and polyethylene in to premium oil products. Int J Green Energy. 2014;12:663–71.

    Google Scholar 

  66. Westerhout RWJ, Kuipers JAM, van Swaaij WPM. Experimental determination of the yield of pyrolysis products of polyethene and polypropene. Influence of reaction conditions. Ind Eng Chem Res. 1998;37:841–7.

    CAS  Google Scholar 

  67. Durmus A, Koc SN, Pozan GS, Kasgoz A. Thermal-catalytic degradation kinetics of polypropylene over BEA, ZSM-5 and MOR zeolites. Appl Catal B. 2005;61:316–22.

    CAS  Google Scholar 

  68. Lin Y-H, Yen H-Y. Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons. Polym Degrad Stab. 2005;89:101–8.

    CAS  Google Scholar 

  69. Wang Y, Huang Q, Zhou Zh, Yang J, Qi F, Pan Y. Online study on the pyrolysis of polypropylene over the HZSM-5 zeolite with photoionization time-of-flight mass spectrometry. Energy Fuels. 2015;29:1090–8.

    CAS  Google Scholar 

  70. Czajczyńska D, Anguilano L, Ghazal H, Krzyżyńska R, Reynolds AJ, Spencer N, Jouhara H. Potential of pyrolysis processes in the waste management sector. Therm Sci Eng Prog. 2017;3:171–97.

    Google Scholar 

  71. Wünsch JR. Polystyrene: synthesis, production and applications. Shawbury: iSmithers Rapra Publishing; 2000.

    Google Scholar 

  72. Peterson JD, Vyazovkin S, Wigh ChA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    CAS  Google Scholar 

  73. Farahanchi A, Malloy R, Sobkowicz MJ. Effects of ultrahigh speed twin screw extrusion on the thermal and mechanical degradation of polystyrene. Polym Eng Sci. 2016;56:743–51.

    CAS  Google Scholar 

  74. Maharana T, Negi YS, Mohanty B. Review article: recycling of polystyrene. Polym Plast Technol Eng. 2007;46:729–36.

    CAS  Google Scholar 

  75. Paraskevopoulou D, Achiliasa DS, Paraskevopoulou A. Migration of styrene from plastic packaging based on polystyrene into food simulants. Polym Int. 2012;61:141–8.

    CAS  Google Scholar 

  76. Capone C, Landro LD, Inzoli F, Penco M, Sartore L. Thermal and mechanical degradation during polymer extrusion processing. Polym Eng Sci. 2007;47:1813–9.

    CAS  Google Scholar 

  77. Zweifel H. Stabilization of polymeric materials. Berlin: Springer; 1998.

    Google Scholar 

  78. Nishizaki H. Comparative study of various methods for thermogravimetric analysis of polystyrene degradation. J Appl Polym Sci. 1980;25:2869–77.

    CAS  Google Scholar 

  79. Lee K-H. Composition of aromatic products in the catalytic degradation of the mixture of waste polystyrene and high-density polyethylene using spent FCC catalyst. Polym Degrad Stab. 2008;93:1284–9.

    CAS  Google Scholar 

  80. Ojha DK, Vinu R. Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. J Anal Appl Pyrolysis. 2015;113:349–59.

    CAS  Google Scholar 

  81. Achilias DS, Kanellopoulou I, Megalokonomos P, Antonakou E, Lappas AA. Chemical recycling of polystyrene by pyrolysis: potential use of the liquid product for the reproduction of polymer. Macromol Mater Eng. 2007;292:923–34.

    CAS  Google Scholar 

  82. Navarro R, Perrino MP, Tardajos MG, Reinecke H. Phthalate plasticizers covalently bound to PVC: plasticization with suppressed migration. Macromolecules. 2010;43:2377–81.

    CAS  Google Scholar 

  83. Reinecke H, Mijangos C, Brulet A, Guenet J-M. Molecular structures in poly(vinyl chloride) thermoreversible gels: effect of tacticity and of solvent type. Macromolecules. 1997;30:959–65.

    CAS  Google Scholar 

  84. Miranda R, Yang J, Roy Ch, Vasile C. Vacuum pyrolysis of commingled plastics containing PVC. I. Kinetic study. Polym Degrad Stab. 2001;72:469–91.

    CAS  Google Scholar 

  85. Miranda R, Pakdel H, Roy C, Vasile C. Vacuum pyrolysis of commingled plastics containing PVC. II. Product analysis. Polym Degrad Stab. 2001;73:47–67.

    CAS  Google Scholar 

  86. Garcia JL, Koelling KW, Xu G, Summers JW. PVC degradation during injection molding: experimental evaluation. J Vinyl Add Technol. 2004;10:17–40.

    CAS  Google Scholar 

  87. Bhunia K, Sablani SS, Tang J, Rasco B. Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Compr Rev Food Sci Food Saf. 2013;12:523–45.

    CAS  PubMed  Google Scholar 

  88. Gui B, Qiao Y, Wan D, Liu S, Han Z, Yao H, Xu M. Nascent tar formation during polyvinylchloride (PVC) pyrolysis. Proc Combust Inst. 2013;34:2321–9.

    CAS  Google Scholar 

  89. Ma S, Lu J, Gao J. Study of the low temperature pyrolysis of PVC. Energy Fuels. 2002;16:338–42.

    CAS  Google Scholar 

  90. Wootthikanokkhan J, Jaturapiree A, Meeyoo V. Effect of metal compounds and experimental conditions on distribution of products from PVC pyrolysis. J Polym Environ. 2003;11:1–6.

    CAS  Google Scholar 

  91. Ali MF, Siddiqui MN. Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue. J Anal Appl Pyrolysis. 2005;74:282–9.

    CAS  Google Scholar 

  92. Hirschler MM. Thermal decomposition (STA and DSC) of PVC compounds under a variety of atmospheres and heating rates. Eur Polym J. 1986;22:153–60.

    CAS  Google Scholar 

  93. Bhaskar T, Negoro R, Muto A, Sakata Y. Prevention of chlorinated hydrocarbons formation during pyrolysis of PVC or PVDC mixed plastics. Green Chem. 2006;8:697–700.

    CAS  Google Scholar 

  94. Ma S, Lu J, Gao J. Study on the pyrolysis dechlorination of PVC waste. Energy Sources. 2004;26:387–96.

    CAS  Google Scholar 

  95. Dudkina LM, Ya Gerasimov G, Khaskhachikh VV. Thermogravimetric and kinetic study of pyrolysis of chlorine-containing medical waste. Earth Environ Sci. 2019;272:022117.

    Google Scholar 

  96. Ehabe EE, Bonfils F, Sainte-Beuve J, Collet A, Schué F. High-temperature mastication of raw natural rubber: changes in macrostructure and mesostructure. Polym Eng Sci. 2006;46:222–7.

    CAS  Google Scholar 

  97. Hernández M, Valentín JL, López-Manchado MA, Ezquerra TA. Influence of the vulcanization system on the dynamics and structure of natural rubber: comparative study by means of broadband dielectric spectroscopy and solid-state NMR spectroscopy. Eur Polym J. 2015;68:90–103.

    Google Scholar 

  98. Ahmad N, Abnisa F, Daud WMAW. Liquefaction of natural rubber to liquid fuels via hydrous pyrolysis. Fuel. 2018;218:227–35.

    CAS  Google Scholar 

  99. Kan T, Strezov V, Evans T. Fuel production from pyrolysis of natural and synthetic rubbers. Fuel. 2017;191:403–10.

    CAS  Google Scholar 

  100. Tamri Z, Yazdi AV, Haghighi MN, Abbas-Abadi MS, Heidarinasab A. The effect of temperature, heating rate, initial cross-linking and zeolitic catalysts as key process and structural parameters on the degradation of natural rubber (NR) to produce the valuable hydrocarbons. J Anal Appl Pyrolysis. 2018;134:35–42.

    CAS  Google Scholar 

  101. Hall WJ, Zakaria N, Williams PT. Pyrolysis of latex gloves in the presence of Y-zeolite. Waste Manag. 2009;29:797–803.

    CAS  PubMed  Google Scholar 

  102. Ahmad N, Abnisa F, Daud WMAW. Potential use of natural rubber to produce liquid fuels using hydrous pyrolysis—a review. RSC Adv. 2016;6:68906–21.

    CAS  Google Scholar 

  103. Friebe L, Nuyken O, Obrecht W. Neodymium-based Ziegler/Natta catalysts and their application in diene polymerization. Adv Polym Sci. 2006;204:1–154.

    CAS  Google Scholar 

  104. Williams PT, Besler S. Pyrolysis–thermogravimetric analysis of tyres and tyre components. Fuel. 1995;14(9):1277–83.

    Google Scholar 

  105. Brazier DW, Schwartz NV. The effect of heating rate on the thermal degradation of polybutadiene. J Appl Polym Sci. 1978;22:113–24.

    CAS  Google Scholar 

  106. Grieco E, Bernardi M, Baldi G. Styrene−butadiene rubber pyrolysis: products, kinetics, modelling. J Anal Appl Pyrolysis. 2008;82:304–11.

    CAS  Google Scholar 

  107. Harandi MH, Alimoradi F, Rowshan Gh, Faghihi M, Keivani M, Abadyan M. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites. Results Phys. 2017;7:338–44.

    Google Scholar 

  108. Martínez JD, Puy N, Murillo R, García T, Navarro MV, Mastral AM. Waste tyre pyrolysis—a review. Renew Sustain Energy Rev. 2013;23:179–21313.

    Google Scholar 

  109. Lopez G, Olazar M, Aguado R, Elordi G, Amutio M, Artetxe M, Bilbao J. Vacuum pyrolysis of waste tires by continuously feeding into a conical spouted bed reactor. Ind Eng Chem Res. 2010;49:8990–7.

    CAS  Google Scholar 

  110. Frigo S, Seggiani M, Puccini M, Vitolo S. Liquid fuel production from waste tyre pyrolysis and its utilisation in a Diesel engine. Fuel. 2014;116:399–408.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Seifali Abbas-Abadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas-Abadi, M.S. The effect of process and structural parameters on the stability, thermo-mechanical and thermal degradation of polymers with hydrocarbon skeleton containing PE, PP, PS, PVC, NR, PBR and SBR. J Therm Anal Calorim 143, 2867–2882 (2021). https://doi.org/10.1007/s10973-020-09344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09344-0

Keywords

Navigation