Skip to main content
Log in

Application of model-free and multivariate non-linear regression methods for evaluation of the thermo-oxidative endurance of a recent manufactured parchment

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermo-oxidative degradation of a parchment recent manufactured from a goat skin has been investigated by TG/DTG, DSC simultaneous analysis performed in static air atmosphere, at six heating rates in the range 3–15 K min−1. At the progressive heating in air atmosphere, the investigated material exhibits three main successive processes occurring with formation of volatile products, namely the dehydration followed by two thermo-oxidative processes. The processing of the non-isothermal data corresponding to the first process of thermo-oxidation was performed by using Netzsch Thermokinetics—a Software Module for Kinetic Analysis. The dependence of activation energy, evaluated by isoconversional methods suggested by Friedman, and Ozawa, Flynn and Wall, on the conversion degree and the relative high standard deviations of this quantity show that the investigated process is a complex one. The mechanism and the corresponding kinetic parameters were determined by Multivariate Non-linear Regression program. Three mechanisms, one consisting in four successive steps and two others in five successive steps, exhibit the best F-test Fit Quality for TG curves. It was also used the previously suggested criterion, according to which the most probable process mechanism correspond to the best agreement between E FR  = E FR (α) (E FR is the activation energy evaluated by isoconversional method suggested by Friedman; α is the conversion degree) obtained from non-isothermal experimental data and activation energy values, E iso , obtained by applying the differential method to isothermal data simulated using non-isothermal kinetic parameters. According to this last criterion, the most probable mechanism of parchment oxidation consists in four successive steps. The contribution of the thermo-oxidation process in the parchment damage by natural aging is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. http://www.kb.w/cons/leather/index-en.html, “Guidelines for the conservation of leather and parchment bookbindings”, National Library of the Netherlands, 1995, chapter 4.

  2. Larsen R, Poulsen DV, Juchauld F, Jerosch H, Odlyha M, de Groot J, et al. Damage assessment of parchment: complexity and relations at different structural levels. Proc. ICOM-CC, 14th triennal meeting, The Hague, 2005, vol. I. London: James & James; 2005. p. 199–208.

  3. Larsen R. Improvement damage assessment of parchment. In: Larsen R, editor. Assessment, data collection and sharing of knowledge. Luxemburg: European Commission, Directorate-General for Research, Directorate I-Environmental; 2007. p. 17–21.

  4. Juchauld F, Jerosch H, Dif K, Ceccarelly R, Tao S. Improvement damage assesment of parchment. In: Larsen R, editor. Assessment, data collection and sharing of knowledge. Luxemburg: European Commission, Directorate-General for Research, Directorate I-Environmental; 2007. p. 59–69.

  5. Chahine C, Rotier C. European-Environmental Leather Project, Research Report, Copenhagen, 1996.

  6. Fessas D, Schiraldi A, Fenni R, Zuccarello LV, Bairati A, Facchini A. Calorimetric, biochemical and morphological investigations to validate a restoration method of fire injured ancient parchment. Thermochim Acta. 2000;348:129–37.

    Article  CAS  Google Scholar 

  7. Larsen R. Experiments and observations in the study of environmental impact on historical vegetable tanned leathers. Thermochim Acta. 2000;365:85–99.

    Article  CAS  Google Scholar 

  8. Chahine C. Change in hydrothermal stability of leather and parchments with deterioration: a DSC study. Thermochim Acta. 2000;365:101–10.

    Article  CAS  Google Scholar 

  9. Cohen NS, Odlyha M, Foster G. Measurement of shrinkage behaviour in leather and parchment by dynamic mechanical analysis. Thermochim Acta. 2000;365:111–7.

    Article  CAS  Google Scholar 

  10. Wess TJ, Orgel JP. Changes of collagen structure by drying dehydrothermal treatment and relation to long term deterioration. Thermochim Acta. 2000;365:119–28.

    Article  CAS  Google Scholar 

  11. Budrugeac P, Miu L, Bocu V, Wortmann FJ, Popescu C. The use of thermal analysis methods in investigation of the thermal degradation of collagen-based materials that are supports of cultural and historic objects. J Therm Anal Calorim. 2003;72:1057–64.

    Article  CAS  Google Scholar 

  12. Odlyha M, Cohen NS, Foster GM, Aliev A, Verdonck E, Grady D. 13C solid state NMR and micro-thermomechanical studies of historical parchment. J Therm Anal Calorim. 2003;71:939–51.

    Article  CAS  Google Scholar 

  13. Popescu C, Budrugeac P, Miu L, Iditoiu C, Wortmannn FJ. Thermal analysis of patrimonial leather objects. 30th Aachen textile conference, Aachen, Germany, 2003.

  14. Budrugeac P, Miu L, Popescu C, Wortmann FJ. Identification of collagen-based materials that are supports of cultural and historical objects. J Therm Anal Calorim. 2004;79:975–85.

    Article  Google Scholar 

  15. Della Gatta G, Badea E, Ceccarelli R, Usacheva T, Masic A, Collucia S. Assessment of damage in old parchment by DSC and SEM. J Therm Anal Calorim. 2005;82:637–49.

    Article  CAS  Google Scholar 

  16. Roduit B, Odlyha M. Prediction of thermal stability of fresh and aged parchment. J Therm Anal Calorim. 2006;85:157–64.

    Article  CAS  Google Scholar 

  17. Fessas D, Signorelli M, Schiraldi A, Kennedy GJ, Wess TJ, Hassel B, et al. Thermal analysis on parchments: DSC and TGA combined approach for heat damage assessment. Thermochim Acta. 2006;447:30–5.

    Article  CAS  Google Scholar 

  18. Budrugeac P, Miu L, Souckova M. Use of thermal analysis methods and scanning electron microscopy to asses the damage in the patrimonial books from Romanian libraries. J Therm Anal Calorim. 2007;88:693–9.

    Article  CAS  Google Scholar 

  19. Badea E, Miu L, Budrugeac P, Giurginca M, Masic A, Badea N, et al. Study of deteriration of historical parchments by various thermal analysis techniques, complemented by SEM, FTIR, UV-VIS-NIR and unilateral NMR investigations. J Therm Anal Calorim. 2008;91:17–27.

    Article  CAS  Google Scholar 

  20. Budrugeac P, Miu L. The suitability of DSC method for damage assessment and certification of historical leathers and parchments. J Cult Heritage. 2008;9:146–53. doi:10.1016/j.culher.2007.10.001.

  21. Popescu C, Budrugeac P, Wortmann FJ, Miu L, Demco D, Baias M. Assessment of collagen-based materials that are supports of cultural and historical objects. Polym Degrad Stab. 2008;93:976–82.

    Google Scholar 

  22. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  23. Arasa M, Ramis X, Salla JM, Mantecón A, Serra A. A study of the degradation of ester-modified epoxy resins obtained by cationic copolimerization of DGEBA with γ-lactones initiated by rare earth triflates. Polym Degrad Stab. 2007;92:2214–22.

    Article  CAS  Google Scholar 

  24. Zhang K, Hong J, Cao G, Zhan D, Tao Y, Cong C. The kinetics of thermal dehydration of copper (II) acetate monohydrate in air. Thermochim Acta. 2005;437:145–9.

    Article  CAS  Google Scholar 

  25. Hong J, Tongyin Y, Min J, Cong C, Zhang K. Preparation, thermal decomposition and lifetime of Eu(III)-phenanthroline complex doped xerogel. Thermochim Acta. 2006;440:31–5.

    Article  CAS  Google Scholar 

  26. Geßwein H, Binder JR. Thermokinetic study of the oxidation of ZrAl3 powders. Thermochim Acta. 2006;444:6–12.

    Article  Google Scholar 

  27. Pahdi SK. Solid-state kinetics of thermal release of pyridine and morphological study of [Ni(ampy)2(NO3)2]; ampy =2-picolylamine. Thermochim Acta. 2006;448:1–6.

    Article  Google Scholar 

  28. Hong J, Guo G, Zhang K. Kinetics and mechanism of non-isothermal dehydration of nickel acetate tetrahydrate in air. J Anal Appl Pyrolisis. 2006;77:111–5.

    Article  CAS  Google Scholar 

  29. Hong-Kun Z, Cao T, Dao-Sen Zh, Wen-Kin X, Ya-Qong W, Qi-Shu Q. Study of the non-isothermal kinetics of decomposition of 4Na2SO4 · 2H2O2 · NaCl. J Therm Anal Calorim. 2007;89:531–6.

    Article  CAS  Google Scholar 

  30. Xu CG, Zhang L, Liu L, Liu GF, Jia DZ. Kinetics of thermal decomposition of mixed-ligand nickel(II) and copper(II) complexes of 4-acyl pyrazolone derivative and pyridine. J Therm Anal Calorim. 2007;89:547–53.

    Article  CAS  Google Scholar 

  31. Musuc AM, Rasus D, Oancea D. Kinetics of exothermal decomposition of 2-nitrophenilhydrazine and 4-nitrophenilhydrazine using DSC non-isothermal data. J Therm Anal Calorim. 2007;90:807–12.

    Article  CAS  Google Scholar 

  32. Budrugeac P. Kinetic of the complex process of thermo-oxidative degradation of poly(vinyl alcohol). J Therm Anal Calorim. 2008; 92:291–6

    Google Scholar 

  33. Budrugeac P, Segal E. Application of isoconversional and multivariate non-linear regression methods for evaluation of the mechanism and kinetic parameters of an epoxy resin. Polym Degrad Stab. 2008;93:1073–80.

    Article  CAS  Google Scholar 

  34. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry—application to phenolic plastic. J Polym Sci. 1965;C6:183–95.

    Google Scholar 

  35. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  36. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. Res J Natl Bur Stand A Phys Chem. 1966;70A:487–523.

    Google Scholar 

  37. Lim JJ, Shannon MH. Evaluation of kinetic parameters of thermal decomposition of native collagen by thermogravimetric analysis. Biopolymers 1974;13:1791–807.

    Article  CAS  Google Scholar 

  38. de Simone G, Naviglio B, Tomaselli M, Bianchi L, Sannino D, Chiambelli P. Study of tanning mechanism of utilizing natural tannins. XXIII IULTCS congress, Friedrichshafen, 1995, Paper 21.

  39. Kaminska A, Siokowska A. The effect of UV radiation on the thermal parameters of collagen degradation. Polym Degrad Stab. 1996;51:15–8.

    Article  CAS  Google Scholar 

  40. Lozano LF, Pena-Rico MA, Hereir Ocotlan-Flores J, Gomez-Cortes A, Velazquez R, Belio IA, et al. Thermal analysis study of human bone. J Mater Sci. 2003;38:4777–82.

    Article  CAS  Google Scholar 

  41. Strlič M, Kolar J, Mencigar DP, Cigić IK, Pihlar B. The papylum project: chemiluminometry fop studies of material oxidation. Durability of paper and writing 2, 2nd international symposium and workshops, Ljubliana, Slovenia, July 7–9 2008, p. 88–9.

  42. Okamoto Y, Saeki K, Phase transition in collagen + gelatin. Kolloid-Zeitscrift. Zeitschrift fur Polymere. 1964;194:124–35.

    Article  CAS  Google Scholar 

  43. Budrugeac P, Homentcovschi D, Segal E. Critical analysis of the isoconversional methods for evaluating the activation energy. I. Theoretical background . J Therm Anal Calorim. 2001;63:457–63.

    Article  CAS  Google Scholar 

  44. Budrugeac P, Segal E. Some methodological problems concerning non-isothermal kinetic analysis of heterogeneous solid–gas reactions. Int J Chem Kinet. 2001;33:564–73.

    Article  CAS  Google Scholar 

  45. Budrugeac P, Miu L. The effect of accelerated thermal ageing on the thermal behaviour of the recently made parchments. J Therm Anal Calorim. 2008;94:335–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Budrugeac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budrugeac, P. Application of model-free and multivariate non-linear regression methods for evaluation of the thermo-oxidative endurance of a recent manufactured parchment. J Therm Anal Calorim 97, 443–451 (2009). https://doi.org/10.1007/s10973-009-0081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0081-9

Keywords

Navigation