Skip to main content
Log in

Non-isothermal decomposition kinetics of in-chain functionalized poly(MMA-co-ethylene)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Efficient incorporation of polar monomers in polyolefin can lead to many desirable properties in the parent chain. Herein, we report the synthesis of ethylene and methyl methacrylate (MMA)-based copolymers by transition metal-catalysed reverse atom transfer radical polymerization technique with controlled ethylene feed pressure. Successful copolymerization was confirmed by 1H nuclear magnetic resonance analysis. With increasing polymerization time, resultant copolymers exhibit bimodal molecular weight distributions with controlled high molecular weight component and less-controlled low molecular weight component as confirmed by size-exclusion chromatography analysis. Morphological and crystal structures of the copolymer were established using scanning electron microscope and X-ray diffraction analysis, respectively. Thermogravimetric analysis of the copolymer under non-isothermal condition shows a two-step decomposition process with the major decomposition in the range of 320–450 °C. Based on approaches of Friedman and Flynn–Wall–Ozawa, model-free multivariate nonlinear regression analyses were performed to find out the formal mechanisms, kinetic model and its corresponding kinetic triplets. The results revealed the nth-order (Fn) mechanism responsible for the decomposition of the copolymer. The estimated kinetic parameters for the decomposition of poly(MMA-co-ethylene) copolymer were Ea= 227.80 kJ mol−1 and A = 6.76 × 1015 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ziegler K, Holzkamp E, Breil H, Martin H. Polymerization of ethylene and other olefins. Angew Chem. 1955;67:426.

    CAS  Google Scholar 

  2. Natta G, Pasquon I. The kinetics of the stereospecific polymerization of α-olefins. Adv Catal. 1959;11:1–66.

    CAS  Google Scholar 

  3. Sedláček T. Processing techniques for polyolefins. In: Al-Ali AlMa’adeed M, Krupa I, editors. Polyolefin compounds and materials. Springer series on polymer and composite materials. Basel: Springer; 2016. p. 79.

    Google Scholar 

  4. Boffa LS, Novak BM. Copolymerization of polar monomers with olefins using transition metal complexes. Chem Rev. 2000;100:1479–93.

    CAS  PubMed  Google Scholar 

  5. Kermagoret A, Debuigne A, Jerome C, Detrembleur C. Precision design of ethylene-polar-monomer-based copolymers by organometallic mediated radical polymerization. Nat Chem. 2014;6:179–87.

    CAS  PubMed  Google Scholar 

  6. Sugimoto R, Kaneko H, Saito J, Kawahara N, Matsuo S, Matsugi T. Controlled radical polymerization with polyolefin macroinitiator: a convenient and versatile approach to polyolefin based block and graft copolymers. Polym Bull. 2014;71:1421–31.

    CAS  Google Scholar 

  7. Franssen NMG, Reek JNH, de Bruin B. Synthesis of functional ‘‘polyolefins’’: state of the art and remaining challenges. Chem Soc Rev. 2013;42:5809–32.

    CAS  PubMed  Google Scholar 

  8. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules. 1995;28:1721–3.

    CAS  Google Scholar 

  9. Nicolay R, Kwak Y, Matyjaszewski K. Dibromotrithiocarbonate iniferter for concurrent ATRP and RAFT polymerization. Effect of monomer, catalyst, and chain transfer agent structure on the polymerization mechanism. Macromolecules. 2008;41:4585–96.

    CAS  Google Scholar 

  10. Matyjaszewski K. Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization. Chem Eur J. 1999;5:3095–102.

    CAS  Google Scholar 

  11. Mori H, Muller AHE. New polymeric architectures with (meth)acrylic acid segments. Prog Polym Sci. 2003;28:1403–39.

    CAS  Google Scholar 

  12. Saikia PJ, Baruah SD. Controlled radical polymerization of n-hexadecyl methacrylate mediated by tris(2,2′- bipyridine)iron(III) complexes. Polym Bull. 2013;70:3291–303.

    CAS  Google Scholar 

  13. Saikia PJ, Hazarika AK, Baruah SD. Iron(III)-mediated ATRP systems of n-docosyl acrylate with AIBN and BPO. Polym Bull. 2013;70:1483–98.

    CAS  Google Scholar 

  14. Gromada J, Matyjaszewski K. Simultaneous reverse and normal initiation in atom transfer radical polymerization. Macromolecules. 2001;34:7664–71.

    CAS  Google Scholar 

  15. Geroges MK, Veregin RPN, Kazmaier PM, Hamer GK. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules. 1993;26:2987–8.

    Google Scholar 

  16. Elsen AM, Nicolay R, Matyjaszewski K. Dual concurrent ATRP/RAFT of methyl acrylate co-initiated by alkyl halides. Macromolecules. 2011;44:1752–4.

    CAS  Google Scholar 

  17. Zhang G, Song IY, Park T, Choi W. Recyclable and stable ruthenium catalyst for free radical polymerization at ambient temperature initiated by visible light photocatalysis. Green Chem. 2012;14:618–21.

    CAS  Google Scholar 

  18. Yamago S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem Rev. 2009;109:5051–68.

    CAS  PubMed  Google Scholar 

  19. Ma H, Davis RH, Bowman CN. A novel sequential photoinduced living graft polymerization. Macromolecules. 2000;33:331–5.

    CAS  Google Scholar 

  20. Saikia PJ, Goswami A, Baruah SD. Transition metal-catalyzed atom transfer radical polymerization of stearyl methacrylate in the presence of carbon tetrabromide and a conventional radical initiator. J App Polym Sci. 2002;86:386–94.

    CAS  Google Scholar 

  21. Saikia PJ, Goswami A, Baruah SD. Reverse atom transfer radical polymerization of stearyl methacrylate using 2,2′-azobisisobutyronitrile as the initiator. J App Polym Sci. 2002;85:1236–45.

    CAS  Google Scholar 

  22. Wang JS, Matyjaszewski K. “Living”/controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules. 1995;28:7572–3.

    CAS  Google Scholar 

  23. Zhu S, Wang W, Tu W, Yan D. Reverse atom transfer radical polymerization of styrene using BPO as the initiator under heterogeneous conditions. Acta Polym. 1999;50:267–9.

    CAS  Google Scholar 

  24. Wang W, Yan D, Jiang X, Detrembleur C, Lecomte P, Jérôme R. Reverse atom-transfer radical polymerization at room temperature. Macromol Rapid Commun. 2001;22:439–43.

    CAS  Google Scholar 

  25. Xia J, Matyjaszewski K. Homogeneous reverse atom transfer radical polymerization of styrene initiated by peroxides. Macromolecules. 1999;32:5199–202.

    CAS  Google Scholar 

  26. Tao W, Akita S, Nakano R, Ito S, Hoshimoto Y, Ogoshi S, Nozaki K. Copolymerisation of ethylene with polar monomers by using palladium catalysts bearing an N-heterocyclic carbene–phosphine oxide bidentate ligand. Chem Commun. 2017;53:2630–3.

    CAS  Google Scholar 

  27. Zhai F, Solomon JB, Jordan RF. Copolymerization of ethylene with acrylate monomers by amide-functionalized α-diimine Pd catalysts. Organometallics. 2017;36:1873–9.

    CAS  Google Scholar 

  28. Carrow BP, Nozaki K. Transition metal catalyzed functional polyolefin synthesis: effecting control through chelating ancillary ligand design and mechanistic insights. Macromolecules. 2014;47:2541–55.

    CAS  Google Scholar 

  29. Nakano R, Chung LW, Watanabe Y, Okuno Y, Okumura Y, Ito S, Morokuma K, Nozaki K. Elucidating the key role of phosphine–sulfonate ligands in palladium-catalyzed ethylene polymerization: effect of ligand structure on the molecular weight and linearity of polyethylene. ACS Catal. 2016;6:6101–13.

    CAS  Google Scholar 

  30. Mitsushige Y, Carrow BP, Ito S, Nozaki K. Ligand-controlled insertion regioselectivity accelerates copolymerisation of ethylene with methyl acrylate by cationic bisphosphine monoxide–palladium catalysts. Chem Sci. 2015;7:737–44.

    PubMed  PubMed Central  Google Scholar 

  31. Sui X, Dai S, Chen C. Ethylene polymerization and copolymerization with polar monomers by cationic phosphine phosphonic amide palladium complexes. ACS Catal. 2015;5:5932–7.

    CAS  Google Scholar 

  32. Guo L, Dai S, Sui X, Chen C. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal. 2016;6:428–41.

    CAS  Google Scholar 

  33. Bon SAF, Steward AG, Haddleton DM. Modification of the ω-bromo end group of poly(methacrylate)s prepared by copper(I)-mediated living radical polymerization. J Polym Sci Part A: Polym Chem. 2000;38:2678–86.

    CAS  Google Scholar 

  34. Liu S, Elyashiv S, Sen A. Copper-mediated controlled copolymerization of methyl acrylate with 1-alkenes under mild conditions. J Am Chem Soc. 2001;123:12738–9.

    CAS  PubMed  Google Scholar 

  35. Venkatesh R, Klumperman B. Olefin copolymerization via controlled radical polymerization: copolymerization of methyl methacrylate and 1-octene. Macromolecules. 2004;37:1226–33.

    CAS  Google Scholar 

  36. Venkatesh R, Harrisson S, Haddleton DM, Klumperman B. Olefin copolymerization via controlled radical polymerization: copolymerization of acrylate and 1-octene. Macromolecules. 2004;37:4406–16.

    CAS  Google Scholar 

  37. Tanaka K, Matyjaszewski K. Controlled copolymerization of n-butyl acrylate with nonpolar 1-alkenes using activators regenerated by electron transfer for atom-transfer radical polymerization. Macromolecules. 2007;40:5255–60.

    CAS  Google Scholar 

  38. Dommanget C, D’Agosto F, Monteil V. Polymerization of ethylene through reversible addition–fragmentation chain transfer (RAFT). Angew Chem Int Ed. 2014;53:6683–6.

    CAS  Google Scholar 

  39. Saikia M, Borphukan S, Baruah U, Gautam A, Saikia PJ, Baruah SD. Poly(ethylene-co-BMA) via dual concurrent ATRP–RAFT and its thermokinetic study. J Therm Anal Calorim. 2017;131:1517–26.

    Google Scholar 

  40. Saikia M, Baruah U, Borphukan S, Saikia BK, Saikia PJ, Baruah SD. Controlled copolymerization of 1-octene and butyl methacrylate via RAFT and their nonisothermal model-free thermokinetic decomposition study. J Polym Sci Part A: Polym Chem. 2019;57:2093–103.

    CAS  Google Scholar 

  41. Benarbia A, Elidrissi A, Ganetri I, Touzani R. Synthesis, characterization and thermal degradation kinetics of copolyesters. J Mater Environ Sci. 2014;5:1262–79.

    Google Scholar 

  42. Malek J, Criado JM. A simple method of kinetic-model discrimination, analysis of differential nonisothermal data. Thermochim Acta. 1994;236:187–97.

    CAS  Google Scholar 

  43. Atkins P, Paula J. Physical chemistry; Chapter 18. 9th ed. New York: WH Freeman; 2010.

    Google Scholar 

  44. Brown ME. Introduction to thermal analysis; Chapter 3. 2nd ed. Dordrecht: Kluwer; 2001.

    Google Scholar 

  45. Fotso Talla AS, Erchiqui F, Godard F, Kocaefe D. An evaluation of the thermal degradation kinetics of novel melt processed PET–hemp fiber composites. J Therm Anal Calorim. 2016;126:1387–96.

    CAS  Google Scholar 

  46. Baruah U, Saikia M, Assanvo EF, Borphukan S, Phukan L, Gautam A, Baruah SD. Synthesis and thermal analysis of poly(methylmethacrylate) oligomer functionalized polyethylene block copolymer. Polym Bull. 2017;74:2137–58.

    CAS  Google Scholar 

  47. Das T, Baruah BP, Saikia BK. Thermal behaviour of low-rank Indian coal fines agglomerated with an organic binder. J Therm Anal Calorim. 2016;126:435–46.

    CAS  Google Scholar 

  48. Avella M, Avolio R, Bonadies I, Carfagna C. Effect of compatibilization on thermal degradation kinetics of HDPE-based composites containing cellulose reinforcements. J Therm Anal Calorim. 2010;102:975–82.

    CAS  Google Scholar 

  49. Zhu F, Feng Q, Xu Y, Liu R, Li K. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim. 2015;119:651–7.

    CAS  Google Scholar 

  50. Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci (Part C): Polym Symp. 1964;6:183–95.

    Google Scholar 

  51. Mothe CG, de Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113:497–505.

    CAS  Google Scholar 

  52. Cui HW, Jiu JT, Sugahara T, Nagao S, Suganuma K, Uchida H, Schroder KT. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives. J Therm Anal Calorim. 2015;119:425–33.

    CAS  Google Scholar 

  53. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc. 1965;38:1881–6.

    CAS  Google Scholar 

  54. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C: Polym Lett. 1966;4:323–8.

    CAS  Google Scholar 

  55. Buback M, Dietzsch H. High-pressure free radical copolymerization of ethene and methyl methacrylate. Macromol Chem Phys. 2001;202:1173–81.

    CAS  Google Scholar 

  56. Kawahara N, Kojoh S, Matsuo S, Kaneko H, Matsugi T, Saito J, Kashiwa N. Synthetic method of polyethylenepoly(methylmethacrylate) (PE-PMMA) polymer hybrid via reversible addition-fragmentation chain transfer (RAFT) polymerization with functionalized polyethylene. Polym Bull. 2006;57:805–12.

    CAS  Google Scholar 

  57. Bakhshi H, Zohuriaan-Mehr MJ, Bouhendi H, Kabiri K. Spectral and chemical determination of copolymer composition of poly (butyl acrylate-co-glycidyl methacrylate) from emulsion polymerization. Polym Test. 2009;28:730–6.

    CAS  Google Scholar 

  58. Kook JW, Kim Y, Hwang K, Kim JH, Lee JY. Synthesis of poly(methyl methacrylate-co-butyl acrylate)/perfluorosilyl methacrylate core-shell nanoparticles: novel approach for optimization of coating process. Polymers. 2018;10:1186–99.

    PubMed Central  Google Scholar 

  59. Silverstein RM, Blasser GC, Morril TC. Spectrometric identification of organic compounds. 5th ed. Singapore: Wiley; 1991. p. 103–20.

    Google Scholar 

  60. Yaghini N, Iedema PD. Molecular weight and branching distribution modeling in radical polymerization with transfer to polymer and scission under gel conditions and allowing for multiradicals. Macromolecules. 2014;47:4851–63.

    CAS  Google Scholar 

  61. Postma A, Davis TP, Li G, Moad G, O’Shea MS. RAFT polymerization with phthalimidomethyl trithiocarbonates or xanthates. On the origin of bimodal molecular weight distributions in living radical polymerization. Macromolecules. 2006;39:5307–18.

    CAS  Google Scholar 

  62. Lenzi MK, Cunningham MF, Lima EL, Pinto JC. Producing bimodal molecular weight distribution polymer resins using living and conventional free-radical polymerization. Ind Eng Chem Res. 2005;44:2568–78.

    CAS  Google Scholar 

  63. Yang J, Karahalis GJ, Hagadorn JR, Boller TM, Morris EJ, Brant P. Catalysts that produce polyethylene with broad, bimodal molecular weight distribution. WIPO Patent. 2019; WO2019108408.

  64. Yan F, Texter J. Capturing nanoscopic length scales and structures by polymerization in microemulsions. Soft Matter. 2006;2:109–18.

    CAS  PubMed  Google Scholar 

  65. Tehrani-Bagha AR. Waterproof breathable layers—a review. Adv Colloid Interfac Sci. 2019;268:114–35.

    CAS  Google Scholar 

  66. Kashiwagi T, Inabi A, Brown JE, Hatada K, Kitayama T, Masuda E. Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules. 1986;19:2160–8.

    CAS  Google Scholar 

  67. Manring LE. Thermal degradation of poly(methyl methacrylate): random side-group scission. Macromolecules. 1991;24:3304–9.

    CAS  Google Scholar 

  68. Holland BJ, Hay JN. The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy. Polymer. 2001;42:4825–35.

    CAS  Google Scholar 

  69. Gałka P, Kowalonek J, Kaczmarek H. Thermogravimetric analysis of thermal stability of poly(methyl methacrylate) films modified with photoinitiators. J Therm Anal Calorim. 2014;115:1387–94.

    Google Scholar 

  70. Saikia M, Baruah U, Borphukan S, Saikia PJ, Gautam A, Baruah SD. RAFT mediated miniemulsion copolymerization of ethylene and BMA and their non-isothermal model-free kinetic analysis. Polym Bull. 2019;76:6437–58.

    CAS  Google Scholar 

  71. Guo J, Choi KY, Schorck FJ. Miniemulsion copolymerization of ethylene and vinyl acetate. Macromol React Eng. 2009;3:412–8.

    CAS  Google Scholar 

  72. Kayacan I, Dogan OM. Pyrolysis of low and high-density polyethylene. Part I: non-isothermal pyrolysis kinetics. Energy Sources Part A Recovery Util Environ Eff. 2008;30:385–91.

    CAS  Google Scholar 

  73. Yazdimamaghani M, Pourvala T, Motamedi E, Fathi B, Vashaee D, Tayebi L. Synthesis and characterization of encapsulated nanosilica particles with an acrylic copolymer by in situ emulsion polymerization using thermoresponsive nonionic surfactant. Materials. 2013;6:3727–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Biros J, Larina T, Trekoval J, Pouchly J. Dependence of the glass transition temperature of poly (methyl methacrylates) on their tacticity. Colloid Polym Sci. 1982;260:27–30.

    CAS  Google Scholar 

  75. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;40:53–68.

    Google Scholar 

  76. Skrdla PJ. Dispersive kinetic models predict variation of the activation energy with extent of conversion observed experimentally in isoconversional data. Thermochim Acta. 2014;578:68–73.

    CAS  Google Scholar 

  77. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    CAS  Google Scholar 

  78. Budrugeac P. Application of model-free and multivariate non-linear regression methods for evaluation of the thermo-oxidative endurance of a recent manufactured parchment. J Therm Anal Calorim. 2009;97:443–5.

    CAS  Google Scholar 

  79. Jankovic B, Mentus A, Jankovic M. A kinetic study of the thermal decomposition process of potassium metabisulfite: estimation of distributed reactivity model. J Phy Chem Solids. 2008;69:1923–33.

    CAS  Google Scholar 

  80. Czech Z, Pełech R, Zych K, Swiderska J. Thermal degradation of copolymers based on selected alkyl methacrylates. J Therm Anal Calorim. 2012;109:573–6.

    CAS  Google Scholar 

  81. Peterson JD, Vyazovkin S, Wight CA. Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). J Phys Chem. 1999;103:8087–92.

    CAS  Google Scholar 

  82. Kang BS, Kim SG, Kim JS. Thermal degradation of poly(methyl methacrylate) polymers: kinetics and recovery of monomers using a fluidized bed reactor. Anal Appl Pyrolysis. 2008;81:7–13.

    CAS  Google Scholar 

  83. Jain AA, Mehra A, Ranade VV. Processing of TGA data: analysis of isoconversional and model fitting methods. Fuel. 2016;165:490–8.

    CAS  Google Scholar 

  84. Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. J Chem Phys. 2013;117:10162–9.

    CAS  Google Scholar 

  85. Gao Z, Kaneko T, Hou D, Nakada M. Kinetics of thermal degradation of poly(methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate. Polym Degrad Stab. 2004;84:399–403.

    CAS  Google Scholar 

  86. Peterson JD, Vyazovkin S, Wigh CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    CAS  Google Scholar 

  87. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    CAS  Google Scholar 

  88. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    CAS  Google Scholar 

  89. Budrugeac P. Thermokinetic study of the thermo-oxidative degradation of a composite epoxy resin material. Rev Roum Chim. 2013;58:371–9.

    CAS  Google Scholar 

  90. Budrugeac P. Kinetics of the complex process of thermo-oxidative degradation of poly(vinyl alcohol). J Therm Anal Calorim. 2008;92:291–6.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director, CSIR-North East Institute of Science & Technology, Jorhat for his permission to publish the results and CSIR for financial support from CSIR-Network Project CSC-0206. UB also wish to thank CSIR for award of CSIR-Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash J. Saikia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, U., Borphukan, S., Saikia, M. et al. Non-isothermal decomposition kinetics of in-chain functionalized poly(MMA-co-ethylene). J Therm Anal Calorim 143, 3093–3105 (2021). https://doi.org/10.1007/s10973-020-09464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09464-7

Keywords

Navigation