Skip to main content
Log in

Investigation of kinetic triplets for thermal degradation of thermally cured vinyl ester resin systems and lifetime predictions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal degradation of thermally cured vinyl ester resin systems is studied for different heating rates. The kinetic triplets, the activation energy, pre-exponential factor and the reaction model f(α) for the different reaction extent of conversions (α) are estimated using advanced isoconversional methods. Although the thermal degradation curves show the degradation occurs as a single stage, the kinetic parameters suggest the otherwise. The activation energy remains constant for α = 0.3–0.575 but varies during the initial and final stages of conversion. Similarly, the pre-exponential factor shows considerable variation between the lower and higher reaction extent (α) values. This shows the complexity in the reaction. The probable reaction mechanism that the degradation follows has been explained. The complexity of the thermal degradation and the changes in reaction model f(α) over different reaction extent has been related. The appropriate working temperature for different thermal lifetime of the cured vinyl ester resin system for the failure of conversion α = 0.2 has been predicted under the nitrogen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lubin B. Handbook of composites. New York: Van Nostrand Reinhold; 1984.

    Google Scholar 

  2. May CA. Epoxy resin chemistry and technology. New York: Marcel Dekker; 1988.

    Google Scholar 

  3. Vimalathithan PK, Vijayakumar CT. Characterization of cenosphere-reinforced vinyl ester composites. J Elastom Plast. 2017. https://doi.org/10.1177/0095244317708591.

    Article  Google Scholar 

  4. David C. Thermal degradation of polymers: in comprehensive chemical kinetics. In: Bamford CH, Tipper CFH, editors. Degradation of polymers, vol. 14. Amsterdam: Elsevier; 1975. p. 1.

    Chapter  Google Scholar 

  5. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  6. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Málek J, Mitsuhashi T. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project: data, methods, and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  7. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17(3):407–33.

    Article  CAS  Google Scholar 

  8. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;24:639–42.

    Article  Google Scholar 

  9. Garn PD, Hulber S. Kinetic investigations by techniques of thermal analysis. Anal Chem. 1972;3:65–111.

    CAS  Google Scholar 

  10. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  11. Vyazovkin S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  12. Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry—application to a phenolic resin. J Polym Sci Part C Polym Lett. 1964;6:183–95.

    Google Scholar 

  13. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4(5):323–8.

    Article  CAS  Google Scholar 

  14. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  15. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  16. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  17. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  18. Vyazovkin S, Wight CA. Estimating realistic confidence intervals for the activation energy determined from thermoanalytical measurements. Anal Chem. 2000;72:3171–5.

    Article  CAS  PubMed  Google Scholar 

  19. Flynn JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300:83–92.

    Article  CAS  Google Scholar 

  20. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  21. Urbanovici E, Segal E. Some problems concerning the temperature integral in non-isothermal kinetics part II: a new criterion to compare the accuracy of various approximations. A third order rational approximation. Thermochem Acta. 1991;178:223–9.

    Article  Google Scholar 

  22. Urbanovici E, Popescu C, Segal E. On the accuracy of Senum and Yang’s fourth degree rational approximation of the temperature integral. J Therm Anal Calorim. 1999;55:325–7.

    Article  CAS  Google Scholar 

  23. Cai J, Liu RH. New approximation for the general temperature integral. J Therm Anal Calorim. 2007;90:469–74.

    Article  CAS  Google Scholar 

  24. Farjas J, Roura P. Isoconversional analysis of solid state transformations. A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim. 2011;105:757–66.

    Article  CAS  Google Scholar 

  25. Šesták J, Berggren G. Study of kinetics of the mechanisms of the solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  26. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19(1):45–60.

    Article  CAS  Google Scholar 

  27. Hefczyc B, Siudyga T, Zawadiak J, Mianowski A. Analysis of the thermal decomposition of azo-peroxyesters by Arrhenius-type and three-parameter equations. J Therm Anal Calorim. 2011;105:981–6.

    Article  CAS  Google Scholar 

  28. Šimon P. Fourty years of Šesták–Berggren equation. Thermochim Acta. 2011;520:156–7.

    Article  Google Scholar 

  29. Šesták J. Philosophy of non-isothermal kinetics. J Therm Anal. 1979;16:503–20.

    Article  Google Scholar 

  30. Gorbachev VM. Some aspects of Šesták’s generalized kinetic equation in thermal analysis. J Therm Anal. 1980;18:193–7.

    Article  CAS  Google Scholar 

  31. Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110:12456–62.

    Article  PubMed  Google Scholar 

  32. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95:733–9.

    Article  Google Scholar 

  33. Shahcheraghi SH, Khayati GR, Ranjbar M. An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation—part I: thermal dehydration kinetic analysis of Cu4SO4(OH)6. J Therm Anal Calorim. 2015;122:175–88.

    Article  CAS  Google Scholar 

  34. Shahcheraghi SH, Khayati GR, Ranjbar M. An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation—part II: validation and application to crystallization of amorphous Cu4SO4(OH)6. J Therm Anal Calorim. 2016;126:981–3.

    Article  CAS  Google Scholar 

  35. Shahcheraghi SH, Khayati GR, Ranjbar M. An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation—part III: thermal desulfurization kinetic analysis of CuO.CuSO4. J Therm Anal Calorim. 2016;123:221–9.

    Article  CAS  Google Scholar 

  36. Toop DJ. Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE Trans Electr Insul. 1971;6:2–14.

    Article  CAS  Google Scholar 

  37. Cai J, Chen S. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. J Comput Chem. 2009;30(13):1986–91.

    Article  CAS  PubMed  Google Scholar 

  38. Trache D, Abdelalziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128:335–48.

    Article  CAS  Google Scholar 

  39. Bassyouni M, Ali I, Abdel-Hamid SMS. Study of thermo-kinetic properties of graphite micro-platelet-enriched vinyl ester composites. J Therm Anal Calorim. 2018;131:1055–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramsamy Kannan Vimalathithan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vimalathithan, P.K., Barile, C. & Vijayakumar, C.T. Investigation of kinetic triplets for thermal degradation of thermally cured vinyl ester resin systems and lifetime predictions. J Therm Anal Calorim 133, 881–891 (2018). https://doi.org/10.1007/s10973-018-7154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7154-6

Keywords

Navigation