Skip to main content
Log in

The effect of the baffle length on the natural convection in an enclosure filled with different nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents a numerical investigation of the natural convection in an inclined rectangular enclosure with a baffle filled with Cu/water and then with Al2O3/water nanofluids using the finite difference method for tracking the thermal behavior within it versus the baffle length. The horizontal enclosure walls are assumed to be adiabatic, while the vertical ones are supposed to be a differentially heated. A thin horizontal baffle was attached to its left sidewall and is assumed to be cold. The flow and thermal fields are computed, respectively, for various values of Rayleigh number (103 ≤ Ra ≤ 105), inclination angle (0° ≤ \(\emptyset\) ≤ 60°), baffle length (0.25 ≤ Lb ≤ 0.5), solid volume fraction (0.02 ≤ \(\phi\) ≤ 0.06), and aspect ratio (1 ≤ AR ≤ 2). It was found that as the Rayleigh number, solid volume fraction, baffle length, and aspect ratio increase, an enhancement in the intensity of fluid flow in the enclosure was observed. In comparison, it reduces when the inclination angle increases. Moreover, it was found that the local Nusselt number (Nuc) enhances with the rise in Rayleigh number and the solid volume fraction. In contrast, it reduces with the increase in the aspect ratio and the inclination angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Aspect ratio of the baffle

AR:

Aspect ratio of the enclosure (H/W)

D b :

Dimensionless baffle position

d b :

Baffle positionm

d p :

Nanoparticle diameter/Nm

g :

Gravitational acceleration/m s−2

H :

Height of enclosure/m

h :

Convection heat transfer coefficient/W m−2 K−1

\(K_{\text{eff}}\) :

Effective thermal conductivity ratio \(\left( {\frac{{k_{\text{nf}} }}{{k_{\text{f}} }}} \right)\)

k r :

Thermal conductivity ratio of the baffle

L b :

Dimensionless baffle length

l b :

Baffle length/m

N p :

Partition number

Nu:

Local Nusselt number

P :

Dimensionless pressure \(\left( {\frac{{pH^{2} }}{{\rho_{\text{nf}} \alpha_{\text{f}}^{2} }}} \right)\)

p :

Pressure/Pa

\({ \Pr }\) :

Prandtl number

\(q_{\text{w}}\) :

Heat flux per unit area/W m−2

\({\text{Ra}}\) :

Rayleigh number \(\left( {\frac{{g\beta_{\text{f}} H^{3} \left( {T_{\text{h}} - T_{\text{c}} } \right)}}{{\upsilon_{\text{f}}^{2} }}} \right)\)

r p :

Nanoparticles radius/Nm

T :

Temperature/°K

U :

Velocity component in X-direction (dimensionless)

u :

Velocity component in X-direction (dimensionless)/m s−1

V :

Velocity component in Y-direction (dimensionless)

v :

Velocity component in the Y-direction (dimensionless)/m s−1

W :

Width of the enclosure/m

w :

Partition thickness/m

X :

Non-dimensional coordinate in horizontal direction (x/W)

x :

Cartesian coordinate in the horizontal direction/m

Y :

Non-dimensional coordinate in vertical direction (y/H)

y :

Cartesian coordinate in the vertical direction/m

\(\alpha_{\text{f}}\) :

Thermal diffusivity of the base fluid (k/ρ·cp)/m2 s−1

\(\alpha_{\text{nf}}\) :

Thermal diffusivity of the nanofluid (k/ρ·cp)nf/m2 s−1

\(\lambda\) :

Thermal diffusivity of the nanofluid \(\left( {\frac{{\alpha_{\text{nf}} }}{{\alpha_{\text{f}} }}} \right)\) (dimensionless)

\(\beta_{\text{f}}\) :

Coefficient of thermal expansion/K−1

\(\beta_{\text{nf}}\) :

Thermal expansion coefficient of the nanofluid/K−1

\(\rho_{\text{nf}}\) :

Density of the nanofluid/Kg m−3

\(\rho_{\text{f}}\) :

Density of the base fluid/Kg m−3

\(\rho_{\text{s}}\) :

Density of the solid nanoparticles/Kg m−3

\(\mu_{\text{nf}}\) :

Dynamic viscosity of the nanofluid/Kg m−1 s−1

\(\theta\) :

Temperature distribution [(T − Tc)/\(\Delta T\)] (dimensionless)

\(\emptyset\) :

Enclosure inclination angle/Degree

Γ :

Inclination angle of the partition/Degree

\(\eta\) :

Criteria of convergence

\(\phi\) :

Solid volume fraction of the nanoparticles

\(\psi\) :

Stream function/m s−2

\(\varPsi\) :

Dimensionless stream function

\(\varOmega\) :

Dimensionless vorticity

\(\upsilon_{\text{f}}\) :

Kinematic viscosity of base fluid/m2 s−1

av:

Average

c:

Cold

E:

External

eff:

Effective

f:

Fluid phase

h:

Hot

I:

Internal

i, j:

Unit vector in x and y directions

\({\text{nf}}\) :

Nanofluid phase

\({\text{s}}\) :

Solid wall

ADI:

Alternating direct implicit

CFD:

Computational fluid dynamic

DQ:

Differential quadrature

FDM:

Finite difference method

FEM:

Finite element method

FVM:

Finite volume method

LBM:

Lattice Boltzmann method

PDQ:

Partial differential quadrature

SUR:

Successive under relaxation

References

  1. Ghodbane M, Boumeddane B, Said N. A linear Fresnel reflector as a solar system for heating water: theoretical and experimental study. Case Stud. Therm. Eng. 2016;8(C):176–86. https://doi.org/10.1016/j.csite.2016.06.006.

    Article  Google Scholar 

  2. Ghodbane M, Boumeddane B, Said Z, Bellos E. A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. J Clean Prod. 2019;231:494–508. https://doi.org/10.1016/j.jclepro.2019.05.201.

    Article  Google Scholar 

  3. Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci. 2004;30(3):231–95. https://doi.org/10.1016/j.pecs.2004.02.001.

    Article  CAS  Google Scholar 

  4. Kalogirou SA. Solar energy engineering: processes and systems. 1st ed. Cambridge: Academic Press; 2009.

    Google Scholar 

  5. Said Z, El Haj Assad M, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ, et al. Enhancing the performance of automotive radiators using nanofluids. Renew Sustain Energy Rev. 2019;112:183–94. https://doi.org/10.1016/j.rser.2019.05.052.

    Article  CAS  Google Scholar 

  6. Said Z, Abdelkareem MA, Rezk H, Nassef AM, Atwany HZ. Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach. Powder Technol. 2020. https://doi.org/10.1016/j.powtec.2020.02.026.

    Article  Google Scholar 

  7. Said Z, Arora S, Bellos E. A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renew Sustain Energy Rev. 2018;94:302–16. https://doi.org/10.1016/j.rser.2018.06.010.

    Article  CAS  Google Scholar 

  8. Said Z. Thermophysical and optical properties of SWCNTs nanofluids. Int Commun Heat Mass Transf. 2016;78:207–13. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.017.

    Article  CAS  Google Scholar 

  9. Said Z, Abdelkareem MA, Rezk H, Nassef AM. Fuzzy modeling and optimization for experimental thermophysical properties of water and ethylene glycol mixture for Al2O3 and TiO2 based nanofluids. Powder Technol. 2019;353:345–58. https://doi.org/10.1016/j.powtec.2019.05.036.

    Article  CAS  Google Scholar 

  10. Rahman S, Issa S, Said Z, El Haj Assad M, Zadeh R, Barani Y. Performance enhancement of a solar powered air conditioning system using passive techniques and SWCNT/R-407c nano refrigerant. Case Stud Therm Eng. 2019;16:100565. https://doi.org/10.1016/j.csite.2019.100565.

    Article  Google Scholar 

  11. Rafiei A, Loni R, Mahadzir SB, Najafi G, Pavlovic S, Bellos E. Solar desalination system with a focal point concentrator using different nanofluids. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2020.115058.

    Article  Google Scholar 

  12. Said Z, Saidur R, Sabiha MA, Rahim NA, Anisur MR. Thermophysical properties of Single Wall Carbon Nanotubes and its effect on exergy efficiency of a flat plate solar collector. Sol Energy. 2015;115:757–69. https://doi.org/10.1016/j.solener.2015.02.037.

    Article  CAS  Google Scholar 

  13. Said Z, Saidur R, Sabiha MA, Hepbasli A, Rahim NA. Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid. J Clean Prod. 2016;112:3915–26. https://doi.org/10.1016/j.jclepro.2015.07.115.

    Article  CAS  Google Scholar 

  14. Ghodbane M, Bellos E, Said Z, Boumeddane B, Hussein AK, Kolsi L. Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09384-6.

    Article  Google Scholar 

  15. Bellos E, Said Z, Tzivanidis C. The use of nanofluids in solar concentrating technologies: a comprehensive review. J Clean Prod. 2018;196:84–99. https://doi.org/10.1016/j.jclepro.2018.06.048.

    Article  CAS  Google Scholar 

  16. Ghodbane M, Said Z, Hachicha AA, Boumeddane B. Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids. Renew Energy. 2020;151:43–56. https://doi.org/10.1016/j.renene.2019.10.137.

    Article  CAS  Google Scholar 

  17. Balla CS, Ramesh A, Kishan N, Rashad AM, Abdelrahman ZMA. Bioconvection in oxytactic microorganism-saturated porous square enclosure with thermal radiation impact. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09009-7.

    Article  Google Scholar 

  18. Pordanjani AH, Vahedi SM, Rikhtegar F, Wongwises S. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim. 2019;135(2):1031–45. https://doi.org/10.1007/s10973-018-7652-6.

    Article  CAS  Google Scholar 

  19. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  CAS  Google Scholar 

  20. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows—Part II: applications. Phys Rep. 2019;791:1–59. https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  CAS  Google Scholar 

  21. Sheikholeslami M, Arabkoohsar A, Babazadeh H. Modeling of nanomaterial treatment through a porous space including magnetic forces. J Therm Anal Calorim. 2020;140(2):825–34. https://doi.org/10.1007/s10973-019-08878-2.

    Article  CAS  Google Scholar 

  22. Sheikholeslami M, Arabkoohsar A, Shafee A, Ismail KAR. Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08979-y.

    Article  Google Scholar 

  23. Sheikholeslami M, Gerdroodbary MB, Shafee A, Tlili I. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08858-6.

    Article  Google Scholar 

  24. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2020;139(5):3317–29. https://doi.org/10.1007/s10973-019-08683-x.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Sajjadi H, Amiri Delouei A, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2019;136(6):2477–85. https://doi.org/10.1007/s10973-018-7901-8.

    Article  CAS  Google Scholar 

  26. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134(3):2295–303. https://doi.org/10.1007/s10973-018-7866-7.

    Article  CAS  Google Scholar 

  27. Sheikholeslami Z, Yousefi Kebria D, Qaderi F. Investigation of photocatalytic degradation of BTEX in produced water using γ-Fe2O3 nanoparticle. J Therm Anal Calorim. 2019;135(3):1617–27. https://doi.org/10.1007/s10973-018-7381-x.

    Article  CAS  Google Scholar 

  28. Chamkha AJ, Rashad AM, Armaghani T, Mansour MA. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Therm Anal Calorim. 2018;132(2):1291–306. https://doi.org/10.1007/s10973-017-6918-8.

    Article  CAS  Google Scholar 

  29. Shafee A, Sheikholeslami M, Jafaryar M, Selimefendigil F, Bhatti MM, Babazadeh H. Numerical modeling of turbulent behavior of nanomaterial exergy loss and flow through a circular channel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09568-0.

    Article  Google Scholar 

  30. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger. J Therm Anal Calorim. 2020;139(3):1619–36. https://doi.org/10.1007/s10973-019-08634-6.

    Article  CAS  Google Scholar 

  31. Mansoury D, Ilami Doshmanziari F, Rezaie S, Rashidi MM. Effect of Al2O3/water nanofluid on performance of parallel flow heat exchangers. J Therm Anal Calorim. 2019;135(1):625–43. https://doi.org/10.1007/s10973-018-7286-8.

    Article  CAS  Google Scholar 

  32. Monfared M, Shahsavar A, Bahrebar MR. Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle. J Therm Anal Calorim. 2019;135(2):1521–32. https://doi.org/10.1007/s10973-018-7708-7.

    Article  CAS  Google Scholar 

  33. Bhattad A, Sarkar J, Ghosh P. Hydrothermal performance of different alumina hybrid nanofluid types in plate heat exchanger. J Therm Anal Calorim. 2020;139(6):3777–87. https://doi.org/10.1007/s10973-019-08682-y.

    Article  CAS  Google Scholar 

  34. Adelekan DS, Ohunakin OS, Gill J, Atayero AA, Diarra CD, Asuzu EA. Experimental performance of a safe charge of LPG refrigerant enhanced with varying concentrations of TiO2 nano-lubricant in a domestic refrigerator. J Therm Anal Calorim. 2019;136(6):2439–48. https://doi.org/10.1007/s10973-018-7879-2.

    Article  CAS  Google Scholar 

  35. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2019;135(1):763–86. https://doi.org/10.1007/s10973-018-7183-1.

    Article  CAS  Google Scholar 

  36. Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J Therm Anal Calorim. 2019;135(1):597–608. https://doi.org/10.1007/s10973-018-7056-7.

    Article  CAS  Google Scholar 

  37. Bellos E, Tzivanidis C, Papadopoulos A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. J Therm Anal Calorim. 2019;135(1):237–55. https://doi.org/10.1007/s10973-018-6989-1.

    Article  CAS  Google Scholar 

  38. Xian HW, Sidik NAC, Najafi G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135(2):981–1008. https://doi.org/10.1007/s10973-018-7477-3.

    Article  CAS  Google Scholar 

  39. Alrobaian AA, Alturki AS. Investigation of numerical and optimization method in the new concept of solar panel cooling under the variable condition using nanofluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09174-9.

    Article  Google Scholar 

  40. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39. https://doi.org/10.1007/s10973-017-6773-7.

    Article  CAS  Google Scholar 

  41. Pahlevaninejad N, Rahimi M, Gorzin M. Thermal and hydrodynamic analysis of non-Newtonian nanofluid in wavy microchannel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09229-x.

    Article  Google Scholar 

  42. Akbari OA, Khodabandeh E, Kahbandeh F, Toghraie D, Khalili M. Numerical investigation of heat transfer of nanofluid flow through a microchannel with heat sinks and sinusoidal cavities by using novel nozzle structure. J Therm Anal Calorim. 2019;138(1):737–52. https://doi.org/10.1007/s10973-019-08227-3.

    Article  CAS  Google Scholar 

  43. Izadi M, Hashemi Pour SMR, Karimdoost Yasuri A, Chamkha AJ. Mixed convection of a nanofluid in a three-dimensional channel. J Therm Anal Calorim. 2019;136(6):2461–75. https://doi.org/10.1007/s10973-018-7889-0.

    Article  CAS  Google Scholar 

  44. Hemmat Esfe M, Afrand M. A review on fuel cell types and the application of nanofluid in their cooling. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08837-x.

    Article  Google Scholar 

  45. Sharma S. Fabricating an experimental setup to investigate the performance of an automobile car radiator by using aluminum/water nanofluid. J Therm Anal Calorim. 2018;133(3):1387–406. https://doi.org/10.1007/s10973-018-7224-9.

    Article  CAS  Google Scholar 

  46. Abdelmalek Z, Khan SU, Awais M, Mustfa MS, Tlili I. Analysis of generalized micropolar nanofluid with swimming of microorganisms over an accelerated surface with activation energy. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09474-5.

    Article  Google Scholar 

  47. Sampath Kumar PB, Gireesha BJ, Mahanthesh B, Chamkha AJ. Thermal analysis of nanofluid flow containing gyrotactic microorganisms in bioconvection and second-order slip with convective condition. J Therm Anal Calorim. 2019;136(5):1947–57. https://doi.org/10.1007/s10973-018-7860-0.

    Article  CAS  Google Scholar 

  48. Abdelmalek Z, Khan SU, Waqas H, Riaz A, Khan IA, Tlili I. A mathematical model for bioconvection flow of Williamson nanofluid over a stretching cylinder featuring variable thermal conductivity, activation energy and second-order slip. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09450-z.

    Article  Google Scholar 

  49. Hassani M, Karimipour A. Discrete ordinates simulation of radiative participating nanofluid natural convection in an enclosure. J Therm Anal Calorim. 2018;134(3):2183–95. https://doi.org/10.1007/s10973-018-7233-8.

    Article  CAS  Google Scholar 

  50. Bhowmick D, Randive PR, Pati S, Agrawal H, Kumar A, Kumar P. Natural convection heat transfer and entropy generation from a heated cylinder of different geometry in an enclosure with non-uniform temperature distribution on the walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09054-2.

    Article  Google Scholar 

  51. Aftab SMA, Younis O, Al-Atabi M. Four decades of utilizing shadowgraph techniques to study natural convection in cavities: literature review. IOP Conf Ser Mater Sci Eng. 2012;36:012021. https://doi.org/10.1088/1757-899X/36/1/012021.

    Article  Google Scholar 

  52. Han CY, Chang SM. Chapter 6: hydromagnetic flow with thermal radiation convection and conduction heat transfer, part 1: heat convection. Croatia: InTech; 2011. p. 133–46.

    Google Scholar 

  53. Hussein AK. Applications of nanotechnology to improve the performance of solar collectors: recent advances and overview. Renew Sustain Energy Rev. 2016;62:767–92. https://doi.org/10.1016/j.rser.2016.04.050.

    Article  Google Scholar 

  54. Bouhalleb M, Abbassi H. Natural convection of nanofluids in enclosures with low aspect ratios. Int J Hydrog Energy. 2014;39(27):15275–86. https://doi.org/10.1016/j.ijhydene.2014.04.069.

    Article  CAS  Google Scholar 

  55. Corcione M, Cianfrini M, Quintino A. Enhanced natural convection heat transfer of nanofluids in enclosures with two adjacent walls heated and the two opposite walls cooled. Int J Heat Mass Transf. 2015;88:902–13. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.028.

    Article  CAS  Google Scholar 

  56. Benseghir C, Rahal S. Simulation of heat transfer in a square cavity with two fins attached to the hot wall. Energy Procedia. 2012;18:1299–306. https://doi.org/10.1016/j.egypro.2012.05.147.

    Article  CAS  Google Scholar 

  57. Elatar A, Teamah MA, Hassab MA. Numerical study of laminar natural convection inside square enclosure with single horizontal fin. Int J Therm Sci. 2016;99:41–51. https://doi.org/10.1016/j.ijthermalsci.2015.08.003.

    Article  Google Scholar 

  58. Mahmoudi AH, Shahi M, Raouf AH, Ghasemian A. Numerical study of natural convection cooling of horizontal heat source mounted in a square cavity filled with nanofluid. Int Commun Heat Mass Transf. 2010;37(8):1135–41. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.005.

    Article  CAS  Google Scholar 

  59. Mahmoodi M. Numerical simulation of free convection of nanofluid in a square cavity with an inside heater. Int J Therm Sci. 2011;50(11):2161–75. https://doi.org/10.1016/j.ijthermalsci.2011.05.008.

    Article  CAS  Google Scholar 

  60. Habibzadeh A, Sayehvand H, Mekanik A. Numerical study of natural convection in a partitioned square cavity filled with nanofluid. Int J Chem Eng Appl. 2011;2(4):261–7. https://doi.org/10.7763/IJCEA.2011.V2.114.

    Article  CAS  Google Scholar 

  61. Sayehvand H, Habibzadeh A, Mekanik A. CFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid. Int J Nano Dimens. 2012;2(3):191–200. https://doi.org/10.7508/ijnd.2011.03.007.

    Article  CAS  Google Scholar 

  62. Guiet J, Reggio M, Vasseur P. Natural convection of nanofluids in a square enclosure with a protruding heater. Adv Mech Eng. 2012;4:167296. https://doi.org/10.1155/2012/167296.

    Article  CAS  Google Scholar 

  63. Öztuna S, Kahvecι K. Natural convection heat transfer of nanofluids in a partially divided enclosure. J Therm Sci Technol. 2013;33(1):139–54.

    Google Scholar 

  64. Naoufal Y, Zaydan M, Rachid S. Numerical study of natural convection in a square cavity with partitions utilizing Cu-water nanofluid. Int J Innov Res Sci Eng Technol. 2015;4(11):10354–67. https://doi.org/10.15680/IJIRSET.2015.0411006.

    Article  Google Scholar 

  65. Selimefendigil F, Öztop HF. Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. J Mol Liq. 2016;216:67–77. https://doi.org/10.1016/j.molliq.2015.12.102.

    Article  CAS  Google Scholar 

  66. Heris SZ, Pour MB, Mahian O, Wongwises S. A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. Int J Heat Mass Transf. 2014;73:231–8. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.071.

    Article  CAS  Google Scholar 

  67. Samadzadeh A, Zeinali Heris S, Hashim I, Mahian O. An experimental investigation on natural convection of non-covalently functionalized MWCNTs nanofluids: effects of aspect ratio and inclination angle. Int Commun Heat Mass Transfer. 2020;111:104473. https://doi.org/10.1016/j.icheatmasstransfer.2019.104473.

    Article  CAS  Google Scholar 

  68. Mahian O, Kianifar A, Heris SZ, Wongwises S. Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int J Heat Mass Transf. 2016;99:792–804. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.045.

    Article  CAS  Google Scholar 

  69. Heris SZ, Noie SH, Talaii E, Sargolzaei J. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts. Nanoscale Res Lett. 2011;6(1):179. https://doi.org/10.1186/1556-276X-6-179.

    Article  CAS  Google Scholar 

  70. Heris SZ, Kazemi-Beydokhti A, Noie SH, Rezvan S. Numerical study on convective heat transfer of AL2O3/water, CuO/water and Cu/water nanofluids through square cross-section duct in laminar flow. Eng Appl Comput Fluid Mech. 2012;6(1):1–14. https://doi.org/10.1080/19942060.2012.11015398.

    Article  Google Scholar 

  71. Heris SZ, Ahmadi F, Mahian O. Pressure drop and performance characteristics of water-based Al2O3 and CuO nanofluids in a triangular duct. J Dispersion Sci Technol. 2013;34(10):1368–75. https://doi.org/10.1080/01932691.2012.745795.

    Article  CAS  Google Scholar 

  72. Nassan TH, Heris SZ, Noie SH. A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluids in square cross-section duct. Int Commun Heat Mass Transf. 2010;37(7):924–8. https://doi.org/10.1016/j.icheatmasstransfer.2010.04.009.

    Article  CAS  Google Scholar 

  73. Heris SZ, Etemad SG, Esfahany MN. Convective heat transfer of a Cu/water nanofluid flowing through a circular tube. Exp Heat Transf. 2009;22(4):217–27. https://doi.org/10.1080/08916150902950145.

    Article  CAS  Google Scholar 

  74. Kolsi L, Algarni S, Mohammed HA, Hassen W, Lajnef E, Aich W, et al. 3D magneto-buoyancy-thermocapillary convection of CNT-water nanofluid in the presence of a magnetic field. Processes. 2020;8(3):258. https://doi.org/10.3390/pr8030258.

    Article  CAS  Google Scholar 

  75. Rashidi I, Kolsi L, Ahmadi G, Mahian O, Wongwises S, Abu-Nada E. Three-dimensional modelling of natural convection and entropy generation in a vertical cylinder under heterogeneous heat flux using nanofluids. Int J Numer Meth Heat Fluid Flow. 2019;30(1):119–42. https://doi.org/10.1108/HFF-12-2018-0731.

    Article  Google Scholar 

  76. Almeshaal MA, Kalidasan K, Askri F, Velkennedy R, Alsagri AS, Kolsi L. Three-dimensional analysis on natural convection inside a T-shaped cavity with water-based CNT–aluminum oxide hybrid nanofluid. J Therm Anal Calorim. 2020;139(3):2089–98. https://doi.org/10.1007/s10973-019-08533-w.

    Article  CAS  Google Scholar 

  77. Ternik P, Rudolf R. Heat transfer enhancement for natural convection flow of water-based nanofluids in a square enclosure. Int J Simul Modell. 2012;11(1):29–39. https://doi.org/10.2507/IJSIMM11(1)3.198.

    Article  Google Scholar 

  78. Ghasemi B, Aminossadati SM. Natural convection heat transfer in an inclined enclosure filled with a water-cuo nanofluid. Numer Heat Transf Part A: Appl. 2009;55(8):807–23. https://doi.org/10.1080/10407780902864623.

    Article  CAS  Google Scholar 

  79. Farsani RY, Mahmoudi A, Jahangiri M. How a conductive baffle improves melting characteristic and heat transfer in a rectangular cavity filled with gallium. Therm Sci Eng Prog. 2020;16:100453. https://doi.org/10.1016/j.tsep.2019.100453.

    Article  Google Scholar 

  80. Oztop HF, Mobedi M, Abu-Nada E, Pop I. A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition. Int J Heat Mass Transf. 2012;55(19):5076–86. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.007.

    Article  CAS  Google Scholar 

  81. Abu-Nada E, Oztop HF. Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int J Heat Fluid Flow. 2009;30(4):669–78. https://doi.org/10.1016/j.ijheatfluidflow.2009.02.001.

    Article  CAS  Google Scholar 

  82. Ho CJ, Chen MW, Li ZW. Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf. 2008;51(17):4506–16. https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.019.

    Article  CAS  Google Scholar 

  83. Kazemi-Beydokhti A, Heris SZ, Moghadam N, Shariati-Niasar M, Hamidi AA. Experimental investigation of parameters affecting nanofluid effective thermal conductivity. Chem Eng Commun. 2014;201(5):593–611. https://doi.org/10.1080/00986445.2013.782291.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Kadhim Hussein or Zafar Said.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, A.K., Ghodbane, M., Said, Z. et al. The effect of the baffle length on the natural convection in an enclosure filled with different nanofluids. J Therm Anal Calorim 147, 791–813 (2022). https://doi.org/10.1007/s10973-020-10300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10300-1

Keywords

Navigation