Skip to main content
Log in

Three-dimensional analysis on natural convection inside a T-shaped cavity with water-based CNT–aluminum oxide hybrid nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three-dimensional numerical simulation on natural convection inside the T-shaped cavity, filled with water-based hybrid nanofluid of CNT–aluminum oxide is performed by vorticity–vector potential formalism. The variables considered are size of enclosure (0.1 < L < 0.9), volumetric percentage of nanoparticles (0 < φ < 4%), fraction of CNT composites (0 < fr < 1), and Rayleigh number (103 < Ra < 106). The heat transfer is increased with the increase in size, volumetric percentage of nanoparticles, fraction of CNT composites, and Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C p :

Specific heat at constant pressure (J kg−1 K−1)

fr:

Fraction of CNT in the volumetric fraction of nanoparticles

g :

Gravitational acceleration (m s−2)

k :

Thermal conductivity (W m−1 K−1)

L :

Enclosure width

n :

Unit vector normal to the wall

Nu :

Local Nusselt number

Pr :

Prandtl number

Ra :

Rayleigh number

Rc :

Thermal conductivity ratio (ks/kf)

t :

Dimensionless time (t′α/l2)

T :

Dimensionless temperature [\([\frac{T^{\prime} - T_{\text{c}}^{\prime}} {T_{\text{h}}^{\prime} - T_{\text{c}}^{\prime}}]\)]

Tc′:

Cold temperature (K)

Th′:

Hot temperature (K)

T o :

Bulk temperature [To = \([ \frac{T_{\text{c}}^{\prime} + T_{\text{h}}^{\prime}}{2}]\)] (K)

\(\vec V\) :

Dimensionless velocity vector (\(\vec V^{\prime} \cdot l/\alpha\))

x, y, z :

Dimensionless Cartesian coordinates (\(x^{\prime}/{l}\), \(y^{\prime}/{l}\), \(z^{\prime}/{l}\))

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\beta\) :

Thermal expansion coefficient (1 K−1)

\(\mu\) :

Dynamic viscosity (kg ms−1)

\(\nu\) :

Kinematic viscosity (m2 s−1)

\(\vec \omega\) :

Dimensionless vorticity (\(\vec \omega ^{\prime} \cdot \alpha /{l^2}\))

\(\phi\) :

Volumetric fraction of nanoparticles

\(\vec \psi\) :

Dimensionless vector potential (\(\vec \psi ^{\prime}/\alpha\))

\(\rho\) :

Density (kg m−3)

\(\Delta T\) :

Dimensionless temperature difference

′:

Dimensional variable

x, y, z:

Cartesiancoordinates

av:

Average

nf:

Nanofluid

References

  1. DeVahl Davis G. Natural convection of air in a square cavity a benchmark numerical solution. Int J Numer Meth Fl. 1983;3:249–64.

    Article  Google Scholar 

  2. Raji A, Hasnaoui M, Firdaouss M, Ouardi C. Natural convection heat transfer enhancement in a square cavity periodically cooled from above. Numer Heat Transf A Appl. 2013;63:511–33.

    Article  CAS  Google Scholar 

  3. Oztop HF, Abu-Nada E, Varol Y, Al-Salem K. Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures. Superlattices Microstruct. 2011;49:453–67.

    Article  CAS  Google Scholar 

  4. Kolsi L, Hussein AK, Borjini MN, Mohammed HA, Ben Aissia H. Computational analysis of three-dimensional unsteady natural convection and entropy generation in a cubical enclosure filled with water–Al2O3 nanofluid. Arab J Sci Eng. 2014;39:7483–93.

    Article  CAS  Google Scholar 

  5. Wang L, Huang C, Yang X, Chai Z, Shi B. Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int J Heat Mass Transf. 2019;128:688–99.

    Article  CAS  Google Scholar 

  6. Mehryan SAM, Sheremet MA, Soltani M, Izadi M. Natural convection of magnetic hybrid nanofluid inside a double-porous medium using two-equation energy model. J Mol Liq. 2019;277:959–70.

    Article  CAS  Google Scholar 

  7. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

  8. Sivasankaran S, Pan KL. Natural convection of nanofluids in a cavity with nonuniform temperature distributions on side walls. Numer Heat Transf A Appl. 2014;65:247–68.

    Article  CAS  Google Scholar 

  9. Kalidasan K, Velkennedy R, Kanna PR. Natural convection heat transfer enhancement using nanofluid and time–variant temperature on the square enclosure with diagonally constructed twin adiabatic blocks. Appl Therm Eng. 2016;92:219–35.

    Article  CAS  Google Scholar 

  10. Sheremet MA, Pop I, Mahian O. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors. Int J Heat Mass Transf. 2018;116:751–61.

    Article  CAS  Google Scholar 

  11. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    Article  CAS  Google Scholar 

  12. Hashim I, Alsabery AI, Sheremet MA, Chamkha AJ. Numerical investigation of natural convection of Al2O3–water nanofluid in a wavy cavity with conductive inner block using Buongiornos two-phase model. Adv Powder Technol. 2019;30:399–414.

    Article  CAS  Google Scholar 

  13. Mojumder S, Rabbi KMd, Saha S, Hasan MN, Saha SC. Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside. J Magn Magn Mater. 2016;407:412–24.

    Article  CAS  Google Scholar 

  14. Koca A, Oztop HF, Varol Y. The effects of Prandtl number on natural convection in triangular enclosures with localized heating from below. Int Commun Heat Mass. 2007;34:511–9.

    Article  Google Scholar 

  15. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem E. 2017;72:70–84.

    Article  CAS  Google Scholar 

  16. Kalidasan K, Velkennedy R, Kanna PR. Laminar natural convection of Copper–Titania/water hybrid nanofluid in an open ended C-shaped enclosure with an isothermal block. J Mol Liq. 2017;246:251–8.

    Article  CAS  Google Scholar 

  17. Alsabery AI, Chamkha AJ, Saleh H, Hashim I. Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls. Powder Technol. 2017;308:214–34.

    Article  CAS  Google Scholar 

  18. Snoussi L, Ouerfelli N, Chesneau X, Chamkha AJ, Belgacem FBM, Guizani A. Natural convection heat transfer in a nanofluid filled U-shaped enclosures: numerical investigations. Heat Transf Eng. 2018;39:1450–60.

    Article  CAS  Google Scholar 

  19. Esfe MH, Arani AAA, Yan W-M, Aghaei A. Natural convection in t-shaped cavities filled with water-based suspensions of COOH-functionalized multi walled carbon nanotubes. Int J Mech Sci. 2017;121:21–32.

    Article  Google Scholar 

  20. Kasaeipoor A, Ghasemi B, Aminossadati SM. Convection of Cu-water nanofluid in a vented t-shaped cavity in the presence of magnetic field. Int J Therm Sci. 2015;94:50–60.

    Article  CAS  Google Scholar 

  21. Esfe MH, Saedodin S, Biglari M, Rostamian H. Experimental investigation of thermal conductivity of CNTs–Al2O3/water: a statistical approach. Int Commun Heat Mass. 2015;69:29–33.

    Article  Google Scholar 

  22. Nine MJ, Batmunkh M, Kim J-H, Chung H-S, Jeong H-M. Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. J Nanosci Nanotechnol. 2012;12:4553–9.

    Article  CAS  Google Scholar 

  23. Salari M, Malekshah EH, Malekshah MH. Three-dimensional numerical analysis of the natural convection and entropy generation of MWCNTs –H2O and air as two immiscible fluids in a rectangular cuboid with fillet corners. Int Commun Heat Mass. 2017;71:881–94.

    CAS  Google Scholar 

  24. Selimefendigil F, Oztop HF. Role of magnetic field and surface corrugation on natural convection in a nanofluid filled 3D trapezoidal cavity. Int Commun Heat Mass. 2018;95:182–96.

    Article  CAS  Google Scholar 

  25. Al-Rashed AAAA, Kalidasan K, Kolsi L, Aydi A, Malekshah EH, Hussein AK, Kanna PR. Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT water nanofluid filled cavity. J Mol Liq. 2018;252:454–68.

    Article  CAS  Google Scholar 

  26. Oztop HF, Kolsi L, Alghamdi A, Abu-Hamdeh N, Borjini MN, Ben Aissia H. Numerical analysis of entropy generation due to natural convection in three-dimensional partially open enclosures. J Taiwan Inst Chem E. 2017;75:131–40.

    Article  CAS  Google Scholar 

  27. Al-Rashed AAAA, Kolsi L, Oztop HF, Aydi A, Malekshah EH, Abu-Hamdeh N, Borjini MN. 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Physica E. 2018;99:294–303.

    Article  CAS  Google Scholar 

  28. Zhuang YJ, Zhu QY. Analysis of entropy generation in combined buoyancy-marangoni convection of power-law nanofluids in 3D heterogeneous porous media. Int J Heat Mass Tran. 2018;118:686–707.

    Article  CAS  Google Scholar 

  29. Abadshapoori MH, Saidi MH. 3D investigation of natural convection of nanofluids in a curved boundary enclosure applying Lattice Boltzmann method. Int J Numer Method H. 2018;28:1827–44.

    Article  Google Scholar 

  30. Hussain Z, Hayat T, Alsaedi A, Ahmad B. Three-dimensional convective flow of CNTs nanofluids with heat generation/absorption effect: a numerical study. Comput Method Appl M. 2018;329:40–54.

    Article  Google Scholar 

  31. Mahian O, Kolsi L, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  32. Mahian O, Kolsi L, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  33. Kahveci K. Buoyancy driven heat transfer of nanouids in a tilted enclosure. J Heat Transf. 2010;132:1–12.

    Article  Google Scholar 

  34. Maxwell JA. Treatise on electricity and magnetism. 2nd ed. Cambridge: Oxford University Press; 1904.

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (G.R.P. 25/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioua Kolsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeshaal, M.A., Kalidasan, K., Askri, F. et al. Three-dimensional analysis on natural convection inside a T-shaped cavity with water-based CNT–aluminum oxide hybrid nanofluid. J Therm Anal Calorim 139, 2089–2098 (2020). https://doi.org/10.1007/s10973-019-08533-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08533-w

Keywords

Navigation