Skip to main content
Log in

Analysis of generalized micropolar nanofluid with swimming of microorganisms over an accelerated surface with activation energy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A fundamental interest has been developed in the twenty-first century toward the significance of nanoparticles due to decisive applications in various thermophysical systems and improved sustainability. Keeping such developments in mind, the present contribution aims to investigate the bioconvection of nanoparticles in flow of generalized micropolar fluid toward an accelerated stretched surface. The activation energy consequences are also encountered in the concentration equations to enhance the mass diffusion phenomenon. Unlike previous investigations, rheological aspects on non-Newtonian materials are signified by involving viscoelastic micropolar which captures the second-grade fluid, micropolar fluid and viscous case simultaneously. The governing equations are rendered in non-dimensional forms by reducing number of independent variables which are further solved analytically by using homotopy analysis technique. The graphical inspection of involved flow parameters is carried out for velocity, temperature, concentration and motile microorganism’s density distributions. It is observed that micro-rotation velocity decreases by increasing buoyancy ratio constraint. Further, motile organism profile declines with an increment in temperature difference parameter and Peclet number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(k_{1}\) :

Fluid parameter

\(\rho_{\text{f}}\) :

Fluid density

\(\sigma_{\text{e}}\) :

Electric conductivity

\(g^{ * }\) :

Gravity

\(\alpha_{\text{f}}\) :

Thermal diffusivity

\(T\) :

Temperature

\(D_{\text{B}}\) :

Diffusion constant

\(E_{\text{a}}\) :

Activation energy

\(b_{1}\) :

Chemotaxis constant

\(k\) :

Viscoelastic parameter

\(\varGamma\) :

Vortex viscosity constant

Nr:

Buoyancy ratio constraint

\(\Pr\) :

Prandtl number

Nb:

Brownian motion parameter

Pe:

Peclet number

\(q_{\text{s}}\) :

Surface heat flux

\(g_{\text{s}}\) :

Motile microorganisms’ flux

\({\text{Sh}}_{\text{x}}\) :

Local Sherwood number

\(\alpha_{1}\) :

Viscoelastic parameter

\(B_{0}\) :

Magnetic field strength

\(k^{ * }\) :

Permeability of porous medium

\(\rho_{\text{m}}\) :

Motile microorganism particles density

C :

Concentration

\(\rho_{\text{p}}\) :

Nanoparticles’ density

\(K_{\text{r}}\) :

Reaction rate

\(\kappa\) :

Boltzmann constant

\(W_{\text{e}}\) :

Swimming cells’ speed

Ha:

Magneto-porosity parameter

Gr:

Mixed convection parameter

Nt:

Thermophoresis parameter

Rb:

Bioconvected Rayleigh number

Lb:

Bioconvected Lewis number

\(\sigma\) :

Microorganisms concentration difference parameter

\(j_{\text{s}}\) :

Surface mass flux

\({\text{Nu}}_{\text{x}}\) :

Local Nusselt number

\({\text{Nn}}_{\text{x}}\) :

Local motile organisms’ density number

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Pub Fed. 1995;231:99–106.

    CAS  Google Scholar 

  2. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.

    Google Scholar 

  3. Hsiao Kai-Long. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl Therm Eng. 2016;98:850–61.

    CAS  Google Scholar 

  4. Turkyilmazoglu Mustafa. Flow of nanofluid plane wall jet and heat transfer. Eur J Mech B Fluids. 2016;59:18–24.

    Google Scholar 

  5. Turkyilmazoglu Mustafa. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput Methods Programs Biomed. 2019;179:104997.

    PubMed  Google Scholar 

  6. Xu H, Xing Z, Vafai K. Analytical considerations of flow/thermal coupling of nanofluids in foam metals with local thermal non-equilibrium (LTNE) phenomena and inhomogeneous nanoparticle distribution. Int J Heat Fluid Flow. 2019;77:242–55.

    Google Scholar 

  7. Alkanhal TA, Sheikholeslami M, Usman M, Haq RU, Shafee A, Al-Ahmadi AS, Tlili I. Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source. Int J Heat Mass Transf. 2019;139:87–94.

    CAS  Google Scholar 

  8. Hsiao Kai-Long. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int J Heat Mass Transf. 2017;112:983–90.

    Google Scholar 

  9. Ahmed J, Khan M, Ahmad L. Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J Mol Liq. 2019;287(1):110853.

    CAS  Google Scholar 

  10. Sandeep N, Animasaun IL. Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field. Alex Eng J. 2017;56(2):263–9.

    Google Scholar 

  11. Sheikholeslami M, Nimafar M, Ganji DD. Nanofluid heat transfer between two pipes considering Brownian motion using AGM. Alex Eng J. 2017;56(2):277–83.

    Google Scholar 

  12. Shahzadi I, Nadeem S. Impinging of metallic nanoparticles along with the slip effects through a porous medium with MHD. J Braz Soc Mech Sci Eng. 2017;39:2535.

    Google Scholar 

  13. Sandeep N, Chamkha AJ, Animasaun IL. Numerical exploration of magnetohydrodynamic nanofluid flow suspended with magnetite nanoparticles. J Braz Soc Mech Sci Eng. 2017;39:3635.

    CAS  Google Scholar 

  14. Siddiqui AA, Turkyilmazoglu M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines. 2019;10(6):373.

    PubMed Central  Google Scholar 

  15. Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–49.

    CAS  Google Scholar 

  16. Raza J, Mebarek-Oudina F, Chamkha A. Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscip Model Mater Struct. 2019;15(4):737–57. https://doi.org/10.1108/MMMS-07-2018-0133.

    Article  CAS  Google Scholar 

  17. Raza J, Farooq M, Mebarek-Oudina F, Mahanthesh B. Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet: numerical and statistical analysis. Multidiscip Model Mater Struct. 2019;15(5):913–31. https://doi.org/10.1108/MMMS-11-2018-0190.

    Article  CAS  Google Scholar 

  18. Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf Part A Appl. 2014;66(12):1321–40.

    CAS  Google Scholar 

  19. Bemani A, Xiong Q, Baghban A, Habibzadeh S, Mohammadi AH, Doranehgard MH. Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO- LSSVM models. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.12.086.

    Article  Google Scholar 

  20. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137:267. https://doi.org/10.1007/s10973-018-7945-9.

    Article  CAS  Google Scholar 

  21. Bozorg MV, Doranehgard MH, Hong K, Xiong Q, Li LKB. A numerical study on discrete combustion of polydisperse magnesium aero-suspensions. Energy. 2020;194(1):116872.

    CAS  Google Scholar 

  22. Asadi A, Kadijani ON, Doranehgard MH, Bozorg MV, Xiong Q, Shadloo MS, Li LK. Numerical study on the application of biodiesel and bioethanol in a multiple injection diesel engine. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.11.088.

    Article  Google Scholar 

  23. Gholamalipour P, Siavashi M, Doranehgard MH. Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid. Int Commun Heat Mass Transf. 2019;109:104367.

    CAS  Google Scholar 

  24. Mesbah M, Vatani A, Siavashi M, Doranehgard MH. Parallel processing of numerical simulation of two-phase flow in fractured reservoirs considering the effect of natural flow barriers using the streamline simulation method. Int J Heat Mass Transf. 2019;131:574–83.

    Google Scholar 

  25. Hopp-Hirschler M, Shadloo MS, Nieken U. Viscous fingering phenomena in the early stage of polymer membrane formation. J Fluid Mech. 2019;864:97–140.

    CAS  Google Scholar 

  26. Shadloo MS. Numerical simulation of compressible flows by lattice Boltzmann method. Numer Heat Transf Part A Appl. 2019;75(3):167–82.

    Google Scholar 

  27. Hopp-Hirschler M, Shadloo MS, Nieken U. A smoothed particle hydrodynamics approach for thermo-capillary flows. Comput Fluids. 2018;176(15):1–19.

    Google Scholar 

  28. Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2019;135:1733. https://doi.org/10.1007/s10973-018-7022-4.

    Article  CAS  Google Scholar 

  29. Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08838-w.

    Article  Google Scholar 

  30. Irandoost Shahrestani M, Maleki A, Shadloo MS, Tlili I. Numerical investigation of forced convective heat transfer and performance evaluation criterion of Al2O3/water nanofluid flow inside an axisymmetric microchannel. Symmetry. 2020;12(1):120. https://doi.org/10.3390/sym12010120.

    Article  CAS  Google Scholar 

  31. Hassan M, Sadri R, Ahmadi G, Dahari MB, Kazi SN, Safaei MR, Sadeghinezhad E. Numerical study of entropy generation in a flowing nanofluid used in micro- and minichannels. Entropy. 2013;15(1):144–55. https://doi.org/10.3390/e15010144.

    Article  CAS  Google Scholar 

  32. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Therm Fluid Sci. 2016;79:231–7.

    CAS  Google Scholar 

  33. Karimipour A. New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method. Int J Therm Sci. 2015;91:146–56.

    CAS  Google Scholar 

  34. Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 2016;301:1218–26.

    CAS  Google Scholar 

  35. Shadloo M, Kimiaeifar A, Bagheri D. Series solution for heat transfer of continuous stretching sheet immersed in a micropolar fluid in the existence of radiation. Int J Numer Meth Heat Fluid Flow. 2013;23(2):289–304. https://doi.org/10.1108/09615531311293470.

    Article  Google Scholar 

  36. Mabood F, Ibrahim SM, Rashidi MM, Shadloo MS, Lorenzini G. Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. Int J Heat Mass Transf. 2016;93:674–82.

    Google Scholar 

  37. Rashidi MM, Nasiri M, Shadloo MS, Yang Z. Entropy generation in a circular tube heat exchanger using nanofluids: effects of different modeling approaches. Heat Transf Eng. 2017;38(9):853–66.

    CAS  Google Scholar 

  38. Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, Dahari M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int Commun Heat Mass Transf. 2016;76:209–14.

    CAS  Google Scholar 

  39. Sajid T, Sagheer M, Hussain S, Bilal M. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy. AIP Adv. 2018;8:035102.

    Google Scholar 

  40. Khan SU, Waqas H, Shehzad SA, Imran M. Theoretical analysis for tangent hyperbolic nanoparticles with combined electrical MHD, activation energy and Wu’s slip features: a mathematical model. Phys Scr. 2019;94(12):125211.

    Google Scholar 

  41. Waqas H, Khan SU, Shehzad SA, Imran M. Significance of nonlinear radiative flow of micropolar nanoparticles over porous surface with gyrotactic microorganism, activation energy and Nield’s condition. Heat Transf Asian Res. 2019;48(7):3230–56.

    Google Scholar 

  42. Kuznetsov AV. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass Transf. 2010;37(10):1421–5.

    CAS  Google Scholar 

  43. Kuznetsov AV. Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability. Nanoscale Res Lett. 2011;6:100.

    PubMed  PubMed Central  Google Scholar 

  44. Xun S, Zhao J, Zheng L, Zhang X. Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity. Int J Heat Mass Transf. 2017;111:1001–6.

    CAS  Google Scholar 

  45. Akbar NS, Khan ZH. Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface. J Magn Magn Mater. 2016;410:72–80.

    CAS  Google Scholar 

  46. Raju CSK, Hoque MM, Sivasankar T. Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms. Adv Powder Technol. 2017;28(2):575–83.

    CAS  Google Scholar 

  47. Basir MFM, Uddin MJ, Bég OA, et al. Influence of Stefan blowing on nanofluid flow submerged in microorganisms with leading edge accretion or ablation. J Braz Soc Mech Sci Eng. 2017;39:4519. https://doi.org/10.1007/s40430-017-0877-7.

    Article  CAS  Google Scholar 

  48. Zhao M, Xiao Y, Wang S. Linear stability of thermal-bioconvection in a suspension of gyrotactic micro-organisms. Int J Heat Mass Transf. 2018;126(Part A):95–102.

    Google Scholar 

  49. Tlili I, Waqas H, Almaneea A, Khan SU, Imran M. Activation energy and second order slip in bioconvection of Oldroyd-B nanofluid over a stretching cylinder: a proposed mathematical model. Processes. 2019;7(12):914.

    CAS  Google Scholar 

  50. Khan SU, Rauf A, Shehzad SA, Abbas Z, Javed T. Study of bioconvection flow in Oldroyd-B nanofluid with motile organisms and effective Prandtl approach. Phys A Stat Mech Appl. 2019;527:121179.

    CAS  Google Scholar 

  51. Xiong Q, Khosravi A, Nabipour N, Doranehgard M, Sabaghmoghadam A, Ross D. Nanofluid flow and heat transfer due to natural convection in a semi-circle/ellipse annulus using modified lattice Boltzmann method. Int J Numer Meth Heat Fluid Flow. 2019;29(12):4746–63.

    Google Scholar 

  52. Turkyilmazoglu M. The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. Int J Mech Sci. 2013;77:263–8.

    Google Scholar 

  53. Ali N, Khan SU, Abbas Z. Hydromagnetic flow and heat transfer of a Jeffrey fluid over an oscillatory stretching surface. Zeitschrift für Naturforschung A. 2015;70(7):567–76.

    CAS  Google Scholar 

  54. Liao SJ. Advances in the homotopy analysis method. Singapore: World Scientific Publishing; 2014.

    Google Scholar 

  55. Turkyilmazoglu M. Analytic approximate solutions of rotating disk boundary layer flow subject to a uniform suction or injection. Int J Mech Sci. 2010;52:1735–44.

    Google Scholar 

  56. Turkyilmazoglu M. Solution of the Thomas–Fermi equation with a convergent approach. Commun Nonlinear Sci Numer Simul. 2012;17:4097–103.

    Google Scholar 

  57. Khan N, Hashmi MS, Khan SU, Syed WA. Study of polymeric liquid between stretching disks with chemical reaction. J Braz Soc Mech Sci Eng. 2018;40:102.

    Google Scholar 

  58. Abbas Z, Wang Y, Hayat T, Oberlack M. Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. Int J Nonlinear Mech. 2008;43:783–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Tlili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmalek, Z., Khan, S.U., Awais, M. et al. Analysis of generalized micropolar nanofluid with swimming of microorganisms over an accelerated surface with activation energy. J Therm Anal Calorim 144, 1051–1063 (2021). https://doi.org/10.1007/s10973-020-09474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09474-5

Keywords

Navigation