Skip to main content
Log in

Recent state of nanofluid in automobile cooling systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofluid that made up of fluid and solid nanoparticles has gained attention from diverse fields due to its superior thermophysical properties to enhance the performance of different systems which require flowing medium with excellent heat transfer behavior. Many past researchers have proven that conventional heat transfer fluid can be replaced by the rising nanotechnology–nanofluid which showed astonishing performance under different circumstances. In this paper, we attempt to present a recent review on the consequences of implantation of nanofluid, especially in vehicle engine cooling system and other heat transfer applications such as solar collector, electronics cooling system, flow boiling and thermal energy storage system. Thermophysical properties and heat transfer performance of nanofluids obtained in simulation, test rigs and even real vehicle engine experiments are discussed thoroughly. Models and correlations used by past researchers to compute thermophysical properties are also included. In the last part, various advantages from using nanofluid are summarized, and suggestions for research gap between past studies are discussed to further improve the investigation work in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

ASHRAE:

American Society of Heating, Refrigerating and Air-Conditioning Engineers

DWCNT:

Double-walled carbon nanotube

EG:

Ethylene glycol

ENF:

Magnetic electrolyte nanofluid

FMWCNT:

Functionalized multi-walled carbon nanotube

F-SWCNT:

Functionalized single-walled carbon nanotube

MWCNT:

Multi-walled carbon nanotube

ppm:

Parts per million (mg L−1)

RBF:

Radial basis function

Rpm:

Revolution per minute

c p :

Specific heat capacity at constant pressure (J kg−1 K−1)

d :

Mean diameter (nm)

k :

Thermal conductivity (W m−1 K−1)

n :

Shape factor

Nu :

Nusselt number

Pe :

Peclet number

Pr :

Prandtl number

Re :

Reynolds number

T :

Temperature (vary with correlations proposed by past researchers in K or °C)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\beta\) :

Volumetric coefficient of thermal expansion (1/K)

\(\eta\) :

Ratio of nanolayer thickness to original particle radius (for reference numbered 39)

µ :

Dynamic viscosity (kg m−1 s−1)

\(\rho\) :

Density (kg m−3)

\(\varphi\) :

Volume concentration (%)

B:

Boltzmann constant (for reference numbered 44)

eff:

Effective

f:

Base fluid

fr:

Freezing point of base fluid

hnf:

Hybrid nanofluid

max:

Maximum

nf:

Nanofluid

np:

Solid nanoparticles

References

  1. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Lemont: Argonne National Lab.; 1995.

    Google Scholar 

  2. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7(2):141–50.

    Article  CAS  Google Scholar 

  3. Aravind SSJ, Ramaprabhu S. Graphene-multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 2013;3(13):4199–206.

    Article  CAS  Google Scholar 

  4. Liu MS, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chemical engineering & technology. 2006;29(1):72–7.

    Article  CAS  Google Scholar 

  5. Yu W, Xie H, Chen L, Li Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta. 2009;491(1):92–6.

    Article  CAS  Google Scholar 

  6. Selvam C, Solaimalai Raja R, Mohan Lal D, Harish S. Overall heat transfer coefficient improvement of an automobile radiator with graphene based suspensions. Int J Heat Mass Transf. 2017;115:580–8.

    Article  CAS  Google Scholar 

  7. Islam R, Shabani B, Andrews J, Rosengarten G. Experimental investigation of using ZnO nanofluids as coolants in a PEM fuel cell. Int J Hydrog Energy. 2017;42(30):19272–86.

    Article  CAS  Google Scholar 

  8. Azmi WH, Abdul Hamid K, Mamat R, Sharma KV, Mohamad MS. Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water–ethylene glycol mixture. Appl Therm Eng. 2016;106:1190–9.

    Article  CAS  Google Scholar 

  9. Mugilan T, Sidik NAC, Japar W. The use of smart material of nanofluid for heat transfer enhancement in microtube with helically spiral rib and groove. J Adv Res Mater Sci. 2017;32(1):1–12.

    Google Scholar 

  10. Abubakar S, Sidik NC. Numerical prediction of laminar nanofluid flow in rectangular microchannel heat sink. J Adv Res Fluid Mech Therm Sci. 2015;7(1):29–38.

    Google Scholar 

  11. Che Sidik NA, Witri Mohd Yazid MNA, Mamat R. Recent advancement of nanofluids in engine cooling system. Renew Sustain Energy Rev. 2017;75(Supplement C):137–44.

    Article  CAS  Google Scholar 

  12. Lee S, Choi S-S, Li S, Eastman J. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121(2):280–9.

    Article  CAS  Google Scholar 

  13. Kole M, Dey T. Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp Therm Fluid Sci. 2010;34(6):677–83.

    Article  CAS  Google Scholar 

  14. Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci. 2007;32(2):397–402.

    Article  CAS  Google Scholar 

  15. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–80.

    Article  CAS  Google Scholar 

  16. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125(4):567–74.

    Article  CAS  Google Scholar 

  17. Chen J, Jia J. Experimental study of TiO2 nanofluid coolant for automobile cooling applications. Mater Res Innov. 2017;21(3):177–81.

    Article  CAS  Google Scholar 

  18. Elias M, Mahbubul I, Saidur R, Sohel M, Shahrul I, Khaleduzzaman S, et al. Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant. Int Commun Heat Mass Transf. 2014;54:48–53.

    Article  CAS  Google Scholar 

  19. Arzani HK, Amiri A, Arzani HK, Rozali SB, Kazi S, Badarudin A. Toward improved heat transfer performance of annular heat exchangers with water/ethylene glycol-based nanofluids containing graphene nanoplatelets. J Therm Anal Calorim. 2016;126(3):1427–36.

    Article  CAS  Google Scholar 

  20. Selvam C, Lal DM, Harish S. Thermal conductivity and specific heat capacity of water–ethylene glycol mixture-based nanofluids with graphene nanoplatelets. J Therm Anal Calorim. 2017;129(2):947–55.

    Article  CAS  Google Scholar 

  21. Garbadeen I, Sharifpur M, Slabber J, Meyer J. Experimental study on natural convection of MWCNT–water nanofluids in a square enclosure. Int Commun Heat Mass Transf. 2017;88:1–8.

    Article  CAS  Google Scholar 

  22. Thakur M, Gangacharyulu D, Singh G. Effect of temperature and multiwalled carbon nanotubes concentration on thermophysical properties of water base nanofluid. IJE Trans. B Appl. 2017;30(8):1223–30.

    Google Scholar 

  23. Ilyas SU, Pendyala R, Narahari M. Stability and thermal analysis of MWCNT-thermal oil-based nanofluids. Colloids Surf A. 2017;527(Supplement C):11–22.

    Article  CAS  Google Scholar 

  24. Amiri M, Movahedirad S, Manteghi F. Thermal conductivity of water and ethylene glycol nanofluids containing new modified surface SiO2–Cu nanoparticles: experimental and modeling. Appl Therm Eng. 2016;108:48–53.

    Article  CAS  Google Scholar 

  25. Abdolbaqi MK, Sidik NAC, Rahim MFA, Mamat R, Azmi W, Yazid MNAWM, et al. Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nanofluids. Int Commun Heat Mass Transf. 2016;77:54–63.

    Article  CAS  Google Scholar 

  26. Chiam H, Azmi W, Usri N, Mamat R, Adam N. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Therm Fluid Sci. 2017;81:420–9.

    Article  CAS  Google Scholar 

  27. Sundari KG, Asirvatham LG, Kumar TMN, Ahammed N. Measurement of thermophysical properties of Al2O3/glycerin (G13) nanofluid for automotive radiator cooling applications. Res J Chem Environ. 2017;21(3):17–24.

    CAS  Google Scholar 

  28. Nabil M, Azmi W, Hamid KA, Mamat R, Hagos FY. An experimental study on the thermal conductivity and dynamic viscosity of TiO2–SiO2 nanofluids in water: ethylene glycol mixture. Int Commun Heat Mass Transf. 2017;86:181–9.

    Article  CAS  Google Scholar 

  29. Adhami Dehkordi R, Hemmat Esfe M, Afrand M. Effects of functionalized single walled carbon nanotubes on thermal performance of antifreeze: an experimental study on thermal conductivity. Appl Therm Eng. 2017;120(Supplement C):358–66.

    Article  CAS  Google Scholar 

  30. Iqbal SM, Raj CS, Michael JJ, Irfan AM. A comparative investigation of Al2O3/H2O, SiO2/H2O and ZrO2/H2O nanofluid for heat transfer applications. Dig J Nanomater Biostruct. 2017;12(2):255–63.

    Google Scholar 

  31. Chen L, Cheng M, Yang D, Yang L. Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl Mech Mater. 2014;548–549:118–123.

    Google Scholar 

  32. Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2–water based nanofluids. Int J Therm Sci. 2005;44(4):367–73.

    Article  CAS  Google Scholar 

  33. Assael MJ, Chen C-F, Metaxa I, Wakeham WA. Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys. 2004;25(4):971–85.

    Article  CAS  Google Scholar 

  34. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    Article  CAS  Google Scholar 

  35. Hong T-K, Yang H-S, Choi C. Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys. 2005;97(6):064311.

    Article  CAS  Google Scholar 

  36. Chen H, Yang W, He Y, Ding Y, Zhang L, Tan C, et al. Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technol. 2008;183(1):63–72.

    Article  CAS  Google Scholar 

  37. Chougule SS, Sahu SK. Comparative study of cooling performance of automobile radiator using Al2O3–water and carbon nanotube-water nanofluid. J Nanotechnol Eng Med. 2014;5(1):010901–6.

    Article  CAS  Google Scholar 

  38. Li X, Zou C, Qi A. Experimental study on the thermo-physical properties of car engine coolant (water/ethylene glycol mixture type) based SiC nanofluids. Int Commun Heat Mass Transf. 2016;77:159–64.

    Article  CAS  Google Scholar 

  39. Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  CAS  Google Scholar 

  40. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15.

    Article  CAS  Google Scholar 

  41. Ahammed N, Asirvatham LG, Wongwises S. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J Therm Anal Calorim. 2016;123(2):1399–409.

    Article  CAS  Google Scholar 

  42. Maxwell JC. A treatise on electricity and magnetism. Wotton-under-Edge: Clarendon press; 1881.

    Google Scholar 

  43. Hamilton R, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    Article  CAS  Google Scholar 

  44. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5(1–2):167–71.

    Article  CAS  Google Scholar 

  45. Koo J, Kleinstreuer C. Erratum: a new thermal conductivity model for nanofluids (Journal of Nanoparticle Research (2004) 6 (577–588)). J Nanopart Res. 2005;7(2–3):324.

    Google Scholar 

  46. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  47. Maïga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46.

    Article  CAS  Google Scholar 

  48. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    Article  CAS  Google Scholar 

  49. Einstein A. A new determination of molecular dimensions. Ann Phys. 1906;19:289–306.

    Article  CAS  Google Scholar 

  50. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Article  Google Scholar 

  51. Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D. Experimental investigation of nanofluids in confined laminar radial flows. Int J Therm Sci. 2009;48(8):1486–93.

    Article  CAS  Google Scholar 

  52. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50(9):2002–18.

    Article  CAS  Google Scholar 

  53. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54(19):4410–28.

    Article  CAS  Google Scholar 

  54. Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina–water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49(8):1345–53.

    Article  CAS  Google Scholar 

  55. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48(2):363–71.

    Article  CAS  Google Scholar 

  56. Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;85:153107–10.

    Article  CAS  Google Scholar 

  57. Nguyen CT, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28(6):1492–506.

    Article  CAS  Google Scholar 

  58. Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat Mass Transf Waerme- und Stoffuebertragung. 2003;39(8–9):775–84.

    Article  Google Scholar 

  59. Anoop K, Kabelac S, Sundararajan T, Das SK. Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J Appl Phys. 2009;106(3):034909.

    Article  CAS  Google Scholar 

  60. Öğüt EB, Kahveci K. Mixed convection heat transfer of ethylene glycol and water mixture based Al2O3 nanofluids: effect of thermal conductivity models. J Mol Liq. 2016;224:338–45.

    Article  CAS  Google Scholar 

  61. Ghanbarpour M, Haghigi EB, Khodabandeh R. Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid. Exp Therm Fluid Sci. 2014;53:227–35.

    Article  CAS  Google Scholar 

  62. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, et al. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76(6):061203.

    Article  CAS  Google Scholar 

  63. Alawi OA, Sidik NAC, Xian HW, Kean TH, Kazi SN. Thermal conductivity and viscosity models of metallic oxides nanofluids. Int J Heat Mass Transf. 2018;116(Supplement C):1314–25.

    Article  CAS  Google Scholar 

  64. Shamaeil M, Firouzi M, Fakhar A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. J Therm Anal Calorim. 2016;126(3):1455–62.

    Article  CAS  Google Scholar 

  65. Eastman JA, Phillpot SR, Choi SUS, Keblinski P. Thermal transport in nanofluids. Annu Rev Mater Res. 2004;34:219–46.

    Article  CAS  Google Scholar 

  66. Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK. A micro-convection model for thermal conductivity of nanofluids. Pramana J Phys. 2005;65(5):863–9.

    Article  CAS  Google Scholar 

  67. Charunyakorn P, Sengupta S, Roy SK. Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts. Int J Heat Mass Transf. 1991;34(3):819–33.

    Article  CAS  Google Scholar 

  68. Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):1–3.

    Article  CAS  Google Scholar 

  69. Wasp EJ, Kenny JP, Gandhi RL. Solid–liquid flow: slurry pipeline transportation [pumps, valves, mechanical equipment, economics]. Ser Bulk Mater Handl (United States). 1977;1(4).

  70. Takabi B, Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng. 2014;6:147059.

    Article  CAS  Google Scholar 

  71. Sarbolookzadeh Harandi S, Karimipour A, Afrand M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int Commun Heat Mass Transf. 2016;76:171–7.

    Article  CAS  Google Scholar 

  72. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  73. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    Article  CAS  Google Scholar 

  74. de Bruijn H. The viscosity of suspensions of spherical particles (the fundamental η-c and φ relations). Recueil des Travaux Chimiques des Pays - Bas. 1942;61(12):863–74.

    Article  Google Scholar 

  75. Mooney M. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci. 1951;6(2):162–70.

    Article  CAS  Google Scholar 

  76. Nielsen LE. Generalized equation for the elastic moduli of composite materials. J Appl Phys. 1970;41(11):4626–7.

    Article  Google Scholar 

  77. Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO–MWCNT/ethylene glycol hybrid nanofluid: experimental study. Physica E. 2016;84:564–70.

    Article  CAS  Google Scholar 

  78. Asadi A, Asadi M, Rezaei M, Siahmargoi M, Asadi F. The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: an experimental study. Int Commun Heat Mass Transf. 2016;78:48–53.

    Article  CAS  Google Scholar 

  79. Rostamian SH, Biglari M, Saedodin S, Esfe MH. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J Mol Liq. 2017;231:364–9.

    Article  CAS  Google Scholar 

  80. Esfe MH, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO–MWCNT/EG–water hybrid nanofluid for engineering applications. Appl Therm Eng. 2017;125:673–85.

    Article  CAS  Google Scholar 

  81. Zhao N, Li Z. Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina–water nanofluids. Materials. 2017;10(5):552.

    Article  CAS  PubMed Central  Google Scholar 

  82. Esfe MH, Saedodin S, Sina N, Afrand M, Rostami S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7.

    Article  CAS  Google Scholar 

  83. Zawrah MF, Khattab RM, Girgis LG, El Daidamony H, Abdel Aziz RE. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 2016;12(3):227–34.

    Article  Google Scholar 

  84. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

    Article  CAS  Google Scholar 

  85. Choi S, Yu W, Hull JR, Zhang Z, Lockwood F. Nanofluids for vehicle thermal management: SAE Technical Paper 2001. Report No.: 0148-7191.

  86. Selvam C, Lal DM, Harish S. Enhanced heat transfer performance of an automobile radiator with graphene based suspensions. Appl Therm Eng. 2017;123:50–60.

    Article  CAS  Google Scholar 

  87. Azmi W, Hamid KA, Usri N, Mamat R, Mohamad M. Heat transfer and friction factor of water and ethylene glycol mixture based TiO2 and Al2O3 nanofluids under turbulent flow. Int Commun Heat Mass Transf. 2016;76:24–32.

    Article  CAS  Google Scholar 

  88. Alosious S, Sarath S, Nair AR, Krishnakumar K. Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al2O3 and CuO nanofluids. Heat Mass Transf. 2017;53(12):3545–63.

    Article  CAS  Google Scholar 

  89. Goudarzi K, Jamali H. Heat transfer enhancement of Al2O3–EG nanofluid in a car radiator with wire coil inserts. Appl Therm Eng. 2017;118:510–7.

    Article  CAS  Google Scholar 

  90. Senthilraja S, Vijayakumar K, Gangadevi R. Effects of specific fuel consumption and exhaust emissions of four stroke diesel engine with CuO/water nanofluid as coolant. Arch Mech Eng. 2017;64(1):111–21.

    Article  Google Scholar 

  91. Muruganandam M, Kumar P. Experimental analysis of four stroke diesel engine by using carbon nano tubes based nano fluids as a coolant. J Appl Fluid Mech. 2017;10:1–5.

    Article  Google Scholar 

  92. Oliveira GA, Contreras EMC, Bandarra Filho EP. Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator. Appl Therm Eng. 2017;111:1450–6.

    Article  CAS  Google Scholar 

  93. Gulhane A, Chincholkar S. Experimental investigation of convective heat transfer coefficient of Al2O3/water nanofluid at lower concentrations in a car radiator. Heat Transf Asian Res. 2017;46:1119–29.

    Article  Google Scholar 

  94. Sheikhzadeh G, Fakhari M, Khorasanizadeh H. Experimental investigation of laminar convection heat transfer of Al2O3–ethylene glycol–water nanofluid as a coolant in a car radiator. J Appl Fluid Mech. 2017;10(1):209–19.

    Article  Google Scholar 

  95. Jagadishwar K, Sudhakar Babu S. Performance investigation of water and propylene glycol mixture based nano-fluids on automotive radiator for enhancement of heat transfer. Int J Mech Eng Technol. 2017;8(7):822–33.

    Google Scholar 

  96. Kumar Sai Tejes P, Appalanaidu Y. Experimental investigation of convective heat transfer augmentation using ZnO-proplyene glycol nanofluids in a automobile radiator. Int J Mech Eng Technol. 2017;8(7):1132–43.

    Google Scholar 

  97. Moghaieb HS, Abdel-Hamid HM, Shedid MH, Helali AB. Engine cooling using Al2O3/water nanofluids. Appl Therm Eng. 2017;115(Supplement C):152–9.

    Article  CAS  Google Scholar 

  98. Abdolbaqi MK, Mamat R, Sidik NAC, Azmi WH, Selvakumar P. Experimental investigation and development of new correlations for heat transfer enhancement and friction factor of BioGlycol/water based TiO2 nanofluids in flat tubes. Int J Heat Mass Transf. 2017;108(Part A):1026–35.

    Article  CAS  Google Scholar 

  99. Sajedi R, Jafari M, Taghilou M. An experimental study on the effect of conflict measurement criteria for heat transfer enhancement in nanofluidics. Powder Technol. 2016;297:448–56.

    Article  CAS  Google Scholar 

  100. Azmi W, Usri N, Mamat R, Sharma K, Noor M. Force convection heat transfer of Al2O3 nanofluids for different based ratio of water: ethylene glycol mixture. Appl Therm Eng. 2017;112:707–19.

    Article  CAS  Google Scholar 

  101. Yu W, Xie H, Li Y, Chen L, Wang Q. Experimental investigation on the heat transfer properties of Al2O3 nanofluids using the mixture of ethylene glycol and water as base fluid. Powder Technol. 2012;230:14–9.

    Article  CAS  Google Scholar 

  102. Naraki M, Peyghambarzadeh SM, Hashemabadi SH, Vermahmoudi Y. Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int J Therm Sci. 2013;66(Supplement C):82–90.

    Article  CAS  Google Scholar 

  103. Ebrahimi M, Farhadi M, Sedighi K, Akbarzade S. Experimental investigation of force convection heat transfer in a car radiator filled with SiO2–water nanofluid. IJE Trans B Appl. 2014;27(2):333–40.

    Google Scholar 

  104. Hussein AM, Bakar RA, Kadirgama K. Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Stud Therm Eng. 2014;2(Supplement C):50–61.

    Article  Google Scholar 

  105. Heris SZ, Shokrgozar M, Poorpharhang S, Shanbedi M, Noie SH. Experimental study of heat transfer of a car radiator with CuO/ethylene glycol–water as a coolant. J Dispers Sci Technol. 2014;35(5):677–84.

    Article  CAS  Google Scholar 

  106. Sarkar J, Tarodiya R. Performance analysis of louvered fin tube automotive radiator using nanofluids as coolants. Int J Nanomanuf. 2013;9(Supplement C):51–65.

    Article  CAS  Google Scholar 

  107. Devendiran DK, Amirtham VA. A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev. 2016;60(1):21–40.

    Article  CAS  Google Scholar 

  108. Barzegarian R, Aloueyan A, Yousefi T. Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation. Int Commun Heat Mass Transf. 2017;86(Supplement C):52–9.

    Article  CAS  Google Scholar 

  109. Jafari SM, Jabari SS, Dehnad D, Shahidi SA. Heat transfer enhancement in thermal processing of tomato juice by application of nanofluids. Food Bioprocess Technol. 2017;10(2):307–16.

    Article  CAS  Google Scholar 

  110. Elshazly KM, Sakr RY, Ali RK, Salem MR. Effect of γ-Al2O3/water nanofluid on the thermal performance of shell and coil heat exchanger with different coil torsions. Heat Mass Transf. 2017;53(6):1893–903.

    Article  CAS  Google Scholar 

  111. Hussein AM. Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Exp Therm Fluid Sci. 2017;88(Supplement C):37–45.

    Article  CAS  Google Scholar 

  112. Bhat MW, Jaffri AJ, Vyas G, Kumar A, Dondapati RS. Experimental investigation on flow behavior and heat transfer characteristics of CuO based nanoparticles with water in composite pipe. Int J Mech Eng Technol. 2017;8(7):1500–7.

    Google Scholar 

  113. Darzi AAR, Farhadi M, Sedighi K. Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger. Int Commun Heat Mass Transf. 2013;47(Supplement C):105–12.

    Article  CAS  Google Scholar 

  114. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53(1):334–44.

    Article  CAS  Google Scholar 

  115. Aghayari R, Maddah H, Ashori F, Hakiminejad A, Aghili M. Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow. Heat Mass Transf Waerme- und Stoffuebertragung. 2014;51(3):301–6.

    Article  CAS  Google Scholar 

  116. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.

    Article  CAS  Google Scholar 

  117. Zamzamian A, Oskouie SN, Doosthoseini A, Joneidi A, Pazouki M. Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp Therm Fluid Sci. 2011;35(3):495–502.

    Article  CAS  Google Scholar 

  118. Ravi Kumar NT, Bhramara P, Sundar LS, Singh MK, Sousa ACM. Heat transfer, friction factor and effectiveness of Fe3O4 nanofluid flow in an inner tube of double pipe U-bend heat exchanger with and without longitudinal strip inserts. Exp Therm Fluid Sci. 2017;85(Supplement C):331–43.

    Article  CAS  Google Scholar 

  119. Hung Y-H, Wang W-P, Hsu Y-C, Teng T-P. Performance evaluation of an air-cooled heat exchange system for hybrid nanofluids. Exp Therm Fluid Sci. 2017;81(Supplement C):43–55.

    Article  CAS  Google Scholar 

  120. Palanisamy K, Kumar PCM. Heat transfer enhancement and pressure drop analysis of a cone helical coiled tube heat exchanger using MWCNT/water nanofluid. J Appl Fluid Mech. 2017;10(SpecialIssue):7–13.

    Google Scholar 

  121. Selvam C, Muhammed Irshad EC, Lal DM, Harish S. Convective heat transfer characteristics of water–ethylene glycol mixture with silver nanoparticles. Exp Therm Fluid Sci. 2016;77(Supplement C):188–96.

    Article  CAS  Google Scholar 

  122. Peyghambarzadeh SM, Hashemabadi SH, Naraki M, Vermahmoudi Y. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Appl Therm Eng. 2013;52(1):8–16.

    Article  CAS  Google Scholar 

  123. Sharma S. Fabricating an experimental setup to investigate the performance of an automobile car radiator by using aluminum/water nanofluid. J Therm Anal Calorim. 1995. https://doi.org/10.1007/s10973-018-7224-9.

    Article  Google Scholar 

  124. Tzeng S-C, Lin C-W, Huang K. Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles. Acta Mech. 2005;179(1–2):11–23.

    Article  Google Scholar 

  125. Zhang K-J, Wang D, Hou F-J, Jiang W-H, Wang F-R, Li J, et al. Characteristic and experiment study of HDD engine coolants. Chin Intern Combust Engine Eng. 2007;1:017.

    Google Scholar 

  126. Ali M, El-Leathy A, Al-Sofyany Z. The effect of nanofluid concentration on the cooling system of vehicles radiator. Adv Mech Eng. 2014;6:962510.

    Article  Google Scholar 

  127. M’hamed B, Sidik NAC, Akhbar MFA, Mamat R, Najafi G. Experimental study on thermal performance of MWCNT nanocoolant in Perodua Kelisa 1000 cc radiator system. Int Commun Heat Mass Transf. 2016;76:156–61.

    Article  Google Scholar 

  128. Devireddy S, Mekala CSR, Veeredhi VR. Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. Int Commun Heat Mass Transf. 2016;78:121–6.

    Article  CAS  Google Scholar 

  129. Mathivanan E, Gasior D, Liu L, Yee K, Li Y. Experimental investigation of the impact of nanofluids on heat transfer performance of a motorcycle radiator: SAE Technical Paper2017. Report No.: 0148-7191.

  130. Sahoo RR, Ghosh P, Sarkar J. Performance enhancement for wavy fin automotive radiator using optimum pg brine based nanofluids. Heat Transf Asian Res. 2017;46(6):585–97.

    Article  Google Scholar 

  131. Vajjha RS, Das DK, Namburu PK. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int J Heat Fluid Flow. 2010;31(4):613–21.

    Article  CAS  Google Scholar 

  132. Vajjha RS, Das DK, Ray DR. Development of new correlations for the Nusselt number and the friction factor under turbulent flow of nanofluids in flat tubes. Int J Heat Mass Transf. 2015;80:353–67.

    Article  CAS  Google Scholar 

  133. Hatami M, Jafaryar M, Zhou J, Jing D. Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O/(CH2OH)2 based nanofluids. Int J Hydrog Energy. 2017;42(16):10891–900.

    Article  CAS  Google Scholar 

  134. Sahoo RR, Sarkar J. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator. Heat Mass Transf. 2017;53(6):1923–31.

    Article  CAS  Google Scholar 

  135. Leong K, Saidur R, Kazi S, Mamun A. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl Therm Eng. 2010;30(17):2685–92.

    Article  CAS  Google Scholar 

  136. Togun H, Kazi SN, Badarudin A. Turbulent heat transfer to separation nanofluid flow in annular concentric pipe. Int J Therm Sci. 2017;117(Supplement C):14–25.

    Article  CAS  Google Scholar 

  137. Khan MS, Dil T. Heat transfer enhancement of automobile radiator using H2O–CuO nanofluid. AIP Adv. 2017;7(4):045018.

    Article  CAS  Google Scholar 

  138. Ahmad UK, Hasreen M, Yahaya NA, Rosnadiah B. Comparative study of heat transfer and friction factor characteristics of nanofluids in rectangular channel. Procedia Eng. 2017;170(Supplement C):541–6.

    Article  CAS  Google Scholar 

  139. Hussein AM, Dawood HK, Bakara RA, Kadirgamaa K. Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system. Case Stud Therm Eng. 2017;9(Supplement C):72–8.

    Article  Google Scholar 

  140. Saripella S, Yu W, Routbort J, France D. Effects of nanofluid coolant in a class 8 truck engine: SAE Technical Paper2007. Report No.: 0148-7191.

  141. Fsadni AM, Whitty JPM, Stables MA, Adeniyi AA. Numerical study on turbulent heat transfer and pressure drop characteristics of a helically coiled hybrid rectangular–circular tube heat exchanger with Al2O3–water nanofluids. Appl Therm Eng. 2017;114(Supplement C):466–83.

    Article  CAS  Google Scholar 

  142. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7183-1.

    Article  Google Scholar 

  143. Boyaghchi FA, Chavoshi M. Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC. Sol Energy. 2018;166:351–70.

    Article  CAS  Google Scholar 

  144. Hu Y, He Y, Zhang Z, Wen D. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. Energy Convers Manag. 2017;142:366–73.

    Article  CAS  Google Scholar 

  145. Jin J, Jing D. A novel liquid optical filter based on magnetic electrolyte nanofluids for hybrid photovoltaic/thermal solar collector application. Sol Energy. 2017;155:51–61.

    Article  CAS  Google Scholar 

  146. Koca HD, Doganay S, Turgut A. Thermal characteristics and performance of Ag–water nanofluid: application to natural circulation loops. Energy Convers Manag. 2017;135:9–20.

    Article  CAS  Google Scholar 

  147. Tahat MS, Benim AC, editors. Experimental Analysis on thermophysical properties of Al2O3/CuO hybrid nano fluid with its effects on flat plate solar collector. Defect and diffusion forum; 2017: Trans Tech Publications.

  148. Manikandan S, Rajan K. Sand–propylene glycol–water nanofluids for improved solar energy collection. Energy. 2016;113:917–29.

    Article  CAS  Google Scholar 

  149. Saidur R, Meng TC, Said Z, Hasanuzzaman M, Kamyar A. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Transf. 2012;55(21–22):5899–907.

    Article  CAS  Google Scholar 

  150. Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. Journal of Thermal Analysis and Calorimetry. 2018.

  151. Bellos E, Tzivanidis C, Papadopoulos A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6989-1.

    Article  Google Scholar 

  152. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  153. Sidik NAC, Samion S, Ghaderian J, Yazid MNAWM. Recent progress on the application of nanofluids in minimum quantity lubrication machining: a review. Int J Heat Mass Transf. 2017;108:79–89.

    Article  CAS  Google Scholar 

  154. Jang SP, Choi SUS. Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng. 2006;26(17):2457–63.

    Article  CAS  Google Scholar 

  155. Chabi A, Zarrinabadi S, Peyghambarzadeh S, Hashemabadi S, Salimi M. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink. Heat Mass Transf. 2017;53(2):661–71.

    Article  CAS  Google Scholar 

  156. Sun B, Liu H. Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator. Appl Therm Eng. 2017;115:435–43.

    Article  CAS  Google Scholar 

  157. Bayomy A, Saghir M. Experimental study of using γ-Al2O3–water nanofluid flow through aluminum foam heat sink: comparison with numerical approach. Int J Heat Mass Transf. 2017;107:181–203.

    Article  CAS  Google Scholar 

  158. Arjun K, Rakesh K. Heat transfer enhancement using alumina nanofluid in circular micro channel. J Eng Sci Technol. 2017;12(1):265–79.

    Google Scholar 

  159. Irwansyah R, Cierpka C, Kähler CJ, editors. On the reliable estimation of heat transfer coefficients for nanofluids in a microchannel., Journal of Physics: Conference SeriesBristol: IOP Publishing; 2016.

    Google Scholar 

  160. Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131(2):1757–66.

    Article  CAS  Google Scholar 

  161. Wu JM, Zhao J. A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application. Prog Nucl Energy. 2013;66(Supplement C):13–24.

    Article  CAS  Google Scholar 

  162. Zangeneh A, Vatani A, Fakhroeian Z, Peyghambarzadeh S. Experimental study of forced convection and subcooled flow boiling heat transfer in a vertical annulus using different novel functionalized ZnO nanoparticles. Appl Therm Eng. 2016;109:789–802.

    Article  CAS  Google Scholar 

  163. Peng H, Ding G, Jiang W, Hu H, Gao Y. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int J Refrig. 2009;32(6):1259–70.

    Article  CAS  Google Scholar 

  164. Ahn HS, Kim H, Jo H, Kang S, Chang W, Kim MH. Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface. Int J Multiph Flow. 2010;36(5):375–84.

    Article  CAS  Google Scholar 

  165. Vafaei S, Wen D. Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel. J Heat Transf. 2010;132(10):102404–7.

    Article  CAS  Google Scholar 

  166. Hashemi M, Noie SH. Study of flow boiling heat transfer characteristics of critical heat flux using carbon nanotubes and water nanofluid. J Therm Anal Calorim. 2017;130(3):2199–209.

    Article  CAS  Google Scholar 

  167. Yang X-F, Liu Z-H. Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid. Int J Heat Mass Transf. 2012;55(25):7375–84.

    Article  CAS  Google Scholar 

  168. Wu S, Zhu D, Li X, Li H, Lei J. Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta. 2009;483(1):73–7.

    Article  CAS  Google Scholar 

  169. Wu S, Zhu D, Zhang X, Huang J. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy Fuels. 2010;24(3):1894–8.

    Article  CAS  Google Scholar 

  170. Parsazadeh M, Duan X. Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system. Appl Therm Eng. 2017;111:950–60.

    Article  CAS  Google Scholar 

  171. Sebti SS, Khalilarya SH, Mirzaee I, Hosseinizadeh SF, Kashani S, Abdollahzadeh M. A numerical investigation of solidification in horizontal concentric annuli filled with nano-enhanced phase change material (NEPCM). World Appl Sci J. 2011;13(1):9–15.

    CAS  Google Scholar 

  172. Tasnim SH, Hossain R, Mahmud S, Dutta A. Convection effect on the melting process of nano-PCM inside porous enclosure. Int J Heat Mass Transf. 2015;85(Supplement C):206–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Azwadi Che Sidik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, H.W., Sidik, N.A.C. & Najafi, G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim 135, 981–1008 (2019). https://doi.org/10.1007/s10973-018-7477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7477-3

Keywords

Navigation