Skip to main content
Log in

Investigation of photocatalytic degradation of BTEX in produced water using γ-Fe2O3 nanoparticle

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Among different methods for produced water treatment, photocatalytic process is an alternative and innovative technology that is more used in water treatment. In this work BTEX was used as an indicator of produced water. γ-Fe2O3 nanoparticles have been synthesized via co-precipitation methods. XRD, DRS, FTIR and SEM techniques have been employed for detecting the particle size, morphology, different functional groups, the optical absorption characteristics and the crystal structure of the synthesized nanoparticle. Experimental tests were designed by the OFAT method. The effective ranges of the main factors on the photocatalytic degradation of BTEX including pH (3–7), catalyst concentration (0–250 mg L−1), UV light intensity (0–100 W) and visible light intensity (0–225 W) were obtained. When maghemite nanoparticles are under visible light and UV light, the best removal efficiency achieved 95% in 5 days and 97% in 90 min, respectively. In addition the photocatalytic process, adsorption and photolysis process of maghemite nanoparticles were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Veil JA, Puder MG, Elcock D, Redweik RJ Jr. A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. Lemont: Argonne National Lab; 2004.

    Book  Google Scholar 

  2. Lee K, Neff J. Produced water: environmental risks and advances in mitigation technologies. Berlin: Springer; 2011.

    Book  Google Scholar 

  3. Akmirza I, Pascual C, Carvajal A, Pérez R, Muñoz R, Lebrero R. Anoxic biodegradation of BTEX in a biotrickling filter. Sci Total Environ. 2017;587:457–65.

    Article  CAS  PubMed  Google Scholar 

  4. Lu J, Wang X, Shan B, Li X, Wang W. Analysis of chemical compositions contributable to chemical oxygen demand (COD) of oilfield produced water. Chemosphere. 2006;62:322–31.

    Article  CAS  PubMed  Google Scholar 

  5. Jiménez S, Micó MM, Arnaldos M, Medina F, Contreras S. State of the art of produced water treatment. Chemosphere. 2018;192:186–208.

    Article  CAS  PubMed  Google Scholar 

  6. Dewil R, Mantzavinos D, Poulios I, Rodrigo MA. New perspectives for advanced oxidation processes. J Environ Manag. 2017;195:93–9.

    Article  CAS  Google Scholar 

  7. Chong MN, Jin B, Chow CW, Saint C. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010;44:2997–3027.

    Article  CAS  PubMed  Google Scholar 

  8. Lee KM, Lai CW, Ngai KS, Juan JC. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 2016;88:428–48.

    Article  CAS  PubMed  Google Scholar 

  9. Nasiri H, Yaghoub M, Jamalabadi A, Sadeghi R, Safaei MR, Nguyen TK, Safdari Shadloo M. A smoothed particle hydrodynamics approach for numerical simulation of nanofluid flows: application to forced convection heat transfer over a horizontal cylinder. J Therm Anal Calorim. 2018. Accepted for publication.

  10. Heydari A, Akbari OA, Safaei MR, Derakhshani M, Abdullah AAA, Alrashed R Mashayekhi, Sheikh Shabani GA, Zarringhalam M, Khang Nguyen T. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim. 2018;131(3):2893–912.

    Article  CAS  Google Scholar 

  11. Yan L, Xu Z, Zhang J. Influence of nanoparticle geometry on the thermal stability and flame retardancy of high-impact polystyrene nanocomposites. J Therm Anal Calorim. 2017;130:1987–96.

    Article  CAS  Google Scholar 

  12. Safaei MR, Ahmadi G, Goodarzi MS, Kamyar A, Kazi SN. Boundary layer flow and heat transfer of FMWCNT/water nanofluids over a flat plate. Fluids. 2016;1(4):31. https://doi.org/10.3390/fluids1040031.

    Article  CAS  Google Scholar 

  13. Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20.

    Article  CAS  Google Scholar 

  14. Arania AAA, Akbari OA, Safaeic MR, Marzban A, Alrashed AA, Ahmadi GR, Nguyen TK. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95.

    Article  CAS  Google Scholar 

  15. Khodabandeh E, Safaei MR, Akbari S, Akbari OA, Alrashed AA. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy. 2018;122:1–16.

    Article  CAS  Google Scholar 

  16. Sheikholeslami M, Shehzad SA. CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int J Heat Mass Transf. 2018;122:1264–71.

    Article  CAS  Google Scholar 

  17. Liu B, Chen B, Zhang B. Oily wastewater treatment by nano-TiO2-induced photocatalysis: seeking more efficient and feasible solutions. IEEE Nanatechnol Mag. 2017;11:4–15.

    Article  Google Scholar 

  18. Byrne C, Subramanian G, Pillai SC. Recent advances in photocatalysis for environmental applications. J Environ Chem Eng. 2017. https://doi.org/10.1016/j.jece.2017.07.080.

    Article  Google Scholar 

  19. Lu M. Photocatalysis and water purification: from fundamentals to recent applications. Hoboken: Wiley; 2013.

    Google Scholar 

  20. Darezereshki E. Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature. Mater Lett. 2010;64:1471–2.

    Article  CAS  Google Scholar 

  21. Ali K, Sarfraz A, Mirza IM, Bahadur A, Iqbal S, ul Haq A. Preparation of superparamagnetic maghemite (γ-Fe2O3) nanoparticles by wet chemical route and investigation of their magnetic and dielectric properties. Curr Appl Phys. 2015;15:925–9.

    Article  Google Scholar 

  22. Darezereshki E, Ranjbar M, Bakhtiari F. One-step synthesis of maghemite (γ-Fe2O3) nano-particles by wet chemical method. J Alloy Compd. 2010;502:257–60.

    Article  CAS  Google Scholar 

  23. Kumar A, Pandey G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Sci & Eng Int J. 2017;1:00018.

    Article  Google Scholar 

  24. Hamad HA, Sadik WA, Abd El-latif MM, Kashyout AB, Feteha MY. Photocatalytic parameters and kinetic study for degradation of dichlorophenol-indophenol (DCPIP) dye using highly active mesoporous TiO2 nanoparticles. J Environ Sci. 2016;43:26–39.

    Article  CAS  Google Scholar 

  25. Majidnia Z, Idris A. Photocatalytic reduction of iodine in radioactive waste water using maghemite and titania nanoparticles in PVA-alginate beads. J Taiwan Inst Chem Eng. 2015;54:137–44.

    Article  CAS  Google Scholar 

  26. Wang J, Shao X, Zhang Q, Tian G, Ji X, Bao W. Preparation of mesoporous magnetic Fe2O3 nanoparticle and its application for organic dyes removal. J Mol Liq. 2017;248:13–8.

    Article  CAS  Google Scholar 

  27. Majidnia Z, Fulazzaky MA. Photocatalytic reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate beads from aqueous solution. J Environ Manag. 2017;191:219–27.

    Article  CAS  Google Scholar 

  28. Majidnia Z, Idris A, Majid M, Zin R, Ponraj M. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads. Appl Radiat Isot. 2015;105:105–13.

    Article  CAS  PubMed  Google Scholar 

  29. Roushenas P, Yusop Z, Majidnia Z, Nasrollahpour R. Photocatalytic degradation of spilled oil in sea water using maghemite nanoparticles. Desalin Water Treat. 2016;57:5837–41.

    Article  CAS  Google Scholar 

  30. Shahrezaei F, Mansouri Y, Zinatizadeh AAL, Akhbari A. Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO 2 nanoparticles. Powder Technol. 2012;221:203–12.

    Article  CAS  Google Scholar 

  31. Saien J, Nejati H. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J Hazard Mater. 2007;148:491–5.

    Article  CAS  PubMed  Google Scholar 

  32. Vargas R, Núñez O. Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale. Sol Energy. 2010;84:345–51.

    Article  CAS  Google Scholar 

  33. Sangkhun W, Laokiat L, Tanboonchuy V, Khamdahsag P, Grisdanurak N. Photocatalytic degradation of BTEX using W-doped TiO 2 immobilized on fiberglass cloth under visible light. Superlattices Microstruct. 2012;52:632–42.

    Article  CAS  Google Scholar 

  34. Yang X, Cai H, Bao M, Yu J, Lu J, Li Y. Highly efficient photocatalytic remediation of simulated polycyclic aromatic hydrocarbons (PAHs) contaminated wastewater under visible light irradiation by graphene oxide enwrapped Ag3PO4 composite. Chin J Chem. 2017;35:1549–58.

    Article  CAS  Google Scholar 

  35. McQueen AD, Kinley CM, Kiekhaefer RL, Calomeni AJ, Rodgers JH, Castle JW. Photocatalysis of a commercial naphthenic acid in water using fixed-film TiO2. Water Air Soil Pollut. 2016;227:132.

    Article  CAS  Google Scholar 

  36. Liu B, Chen B, Zhang B, Zheng J, Jing L. Toxicity and biodegradability study on enhanced photocatalytic oxidation of polycyclic aromatic hydrocarbons in offshore produced water. Canadian Society of Civil Engineering Annu. General Conf, Vancouver, Canada, 2017.

  37. Hernández-Ramírez A, Medina-Ramírez I. Photocatalytic semiconductors. Berlin: Springer; 2016.

    Google Scholar 

  38. Bina B, Amin MM, Rashidi A, Pourzamani H. Water and wastewater treatment from BTEX by carbon nanotubes and Nano-Fe. Water Resour. 2014;41:719–27.

    Article  CAS  Google Scholar 

  39. A.P.H. Association, A.W.W. Association, A.W.W. Association, W.P.C. Federation, W.E. Federation. Standard methods for the examination of water and wastewater. Washington: American Public Health Association; 1915.

    Google Scholar 

  40. Watanabe H, Seto JE. The point of zero charge and the isoelectric point of γ-Fe2O3 and α-Fe2O3. Bull Chem Soc Jpn. 1986;59:2683–7.

    Article  CAS  Google Scholar 

  41. Duarte-Davidson R, Courage C, Rushton L, Levy L. Benzene in the environment: an assessment of the potential risks to the health of the population. Occup Environ Med. 2001;58:2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Omar K, Aziz N, Amr S, Palaniandy P. Removal of lindane and Escherichia coli (E coli) from rainwater using photocatalytic and adsorption treatment processes. Glob Nest J. 2017;19:191–8.

    Article  CAS  Google Scholar 

  43. Dutta AK, Maji SK, Adhikary B. γ-Fe 2 O 3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater Res Bull. 2014;49:28–34.

    Article  CAS  Google Scholar 

  44. Daneshvar N, Salari D, Khataee AR. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J Photochem Photobiol A. 2003;157:111–6.

    Article  CAS  Google Scholar 

  45. Ahmed S, Rasul M, Martens WN, Brown R, Hashib M. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination. 2010;261:3–18.

    Article  CAS  Google Scholar 

  46. Ba-Abbad MM, Takriff MS, Said M, Benamor A, Nasser MS, Mohammad AW. Photocatalytic degradation of pentachlorophenol using ZnO nanoparticles: study of intermediates and toxicity. Int J Environ Res. 2017;11:1–13.

    Article  CAS  Google Scholar 

  47. Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, Qiao Z, Tanaka H, Yang Y. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci Total Environ. 2018;627:1253–63.

    Article  CAS  PubMed  Google Scholar 

  48. Kondrakov A, Ignatev A, Frimmel F, Bräse S, Horn H, Revelsky A. Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis: a comparative study. Appl Catal B. 2014;160:106–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Sheikholeslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, Z., Yousefi Kebria, D. & Qaderi, F. Investigation of photocatalytic degradation of BTEX in produced water using γ-Fe2O3 nanoparticle. J Therm Anal Calorim 135, 1617–1627 (2019). https://doi.org/10.1007/s10973-018-7381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7381-x

Keywords

Navigation