Skip to main content

Advertisement

Log in

Investigation of morphology and dielectric properties of PVDF composite films reinforced with MWCNT@PDA core–shell nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper chooses to use polyvinylidene fluoride (PVDF) as the matrix, multiwalled carbon nanotubes (MWCNT) modified by polydopamine (PDA) as fillers, to prepare the MWCNT@PDA/PVDF composite films with excellent energy storage characteristics. The films were prepared by solution tape casting MWCNT@PDA/PVDF and MWCNT/PVDF composite films. The microstructures and properties of the composite films, especially the dielectric property, were investigated and the effect of MWCNT@PDA was analyzed. Results indicated that with the increase of filler content, the dispersion effect of filler in matrix becomes worse, and the energy storage modulus and dielectric constant increase gradually. When the content of MWCNT@PDA is 2.0 wt%, the dielectric constant of the MWCNT@PDA/PVDF composite film reaches 10.5 at 100 Hz, and the dielectric loss is 0.023. The addition of MWCNT@PDA is beneficial to increase the energy storage density of the composite membrane. When the content of MWCNT@PDA is 1.5 wt%, the energy storage density is 0.62 J/cm3, which is 2.7 times that of the pure membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X.H. Hao, J. Adv. Dielectr. 3, 1330001 (2013)

    Article  Google Scholar 

  2. T. Kousksou, P. Bruel, A. Jamil, T. El Rhafiki, Y. Zeraouli, Sol. Energy Mater. Sol. Cells 120, 59–80 (2014)

    Article  CAS  Google Scholar 

  3. B.J. Chu, X.Z. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334–336 (2006)

    Article  CAS  Google Scholar 

  4. P.W. Zhu, L. Weng, X.R. Zhang, X.M. Wang, L.Z. Guan, L.Z. Liu, J. Mater. Sci. 55, 7665–7679 (2020)

    Article  CAS  Google Scholar 

  5. A. Azizi, M.R. Gadinski, Q. Li, M.A. AlSaud, J. Wang, Y. Wang, B. Wang, F.H. Liu, L.Q. Chen, N. Alem, Q. Wang, Adv Mater 29, 1701864 (2017)

    Article  Google Scholar 

  6. Y. Yang, H.L. Sun, D. Yin, Z.H. Lu, J.H. Wei, R. Xiong, J. Shi, Z.Y. Wang, Z.Y. Liu, Q.Q. Lei, Journal of Materials Chemistry A 3, 4916–4921 (2015)

    Article  CAS  Google Scholar 

  7. Q. Wang, L. Zhu, J. Polym. Sci., Part B: Polym. Phys. 49, 1421–1429 (2011)

    Article  CAS  Google Scholar 

  8. Z. Wang, T. Wang, M.R. Fang, C. Wang, Y.J. Xiao, Y.P. Pu, Compos. Sci. Technol. 146, 139–146 (2017)

    Article  CAS  Google Scholar 

  9. K.C. Li, H. Wang, F. Xiang, W.H. Liu, H.B. Yang, Appl. Phys. Lett. 95, 202904 (2009)

    Article  Google Scholar 

  10. J.J. Li, J. Claude, L.E. Norena-Franco, S.I. Seok, Q. Wang, Chem. Mater. 20, 6304–6306 (2008)

    Article  CAS  Google Scholar 

  11. W.M. Xia, Z. Xu, F. Wen, Z.C. Zhang, Ceram. Int. 38, 1071–1075 (2012)

    Article  CAS  Google Scholar 

  12. X.L. Dou, X.L. Liu, Y. Zhang, H. Feng, J.F. Chen, S. Du, Appl. Phys. Lett. 95, 132904 (2009)

    Article  Google Scholar 

  13. E.Q. Huang, J. Zhao, J.W. Zha, L. Zhang, R.J. Liao, Z.M. Dang, J. Appl. Phys. 115, 194102 (2014)

    Article  Google Scholar 

  14. H.W. Lu, L.Z. Liu, J.Q. Lin, W.L. Yang, L. Weng, X.R. Zhang, G.R. Chen, W. Huang, J. Appl. Polym. Sci. 134, 45362 (2017)

    Article  Google Scholar 

  15. S.H. Wang, Y. Wan, B. Sun, L.Z. Liu, W.J. Xu, Nanoscale Res Lett 9, 522 (2014)

    Article  Google Scholar 

  16. B. Zhao, M. Hamidinejad, C.X. Zhao, R.S. Li, S. Wang, Y. Kazemi, C.B. Park, J. Mater. Chem. A 7, 133–140 (2019)

    Article  CAS  Google Scholar 

  17. X.M. He, Y.M. Chen, K. Zhu, S.X. Wang, H.W. Zhang, W. He, F. Xia, X.F. Jin, Y.S. Hu, X.H. Su, Polym. Compos. 39, E1920–E1927 (2018)

    Article  CAS  Google Scholar 

  18. A. Eshraghian, M. Kamkar, M. Asgari, M. Arjmand, U. Sundararaj, Polym. Compos. 42, 1034–1048 (2021)

    Article  CAS  Google Scholar 

  19. W. Chueangchayaphan, P. Luangchuang, N. Chueangchayaphan, M.A. Sulaiman, Y. Nakaramontri, Chin. J. Polym. Sci. 39, 725–735 (2021)

    Article  CAS  Google Scholar 

  20. P. Wang, L. Yang, S. Gao, X.L. Chen, T. Cao, C. Wang, H. Liu, X.H. Hu, X.S. Wu, S.J. Feng, Advanced Composites and Hybrid Materials 4, 639–646 (2021)

    Article  CAS  Google Scholar 

  21. J.Y. Liang, Y.Z. Gu, Z.C. Zhang, S.K. Wang, M. Li, Z.G. Zhang, Nanotechnology 29, 035701 (2017)

    Article  Google Scholar 

  22. K. Silakaew, P. Thongbai, RSC Adv. 9, 23498–23507 (2019)

    Article  CAS  Google Scholar 

  23. Q.H. Deng, B.H. Chen, M.L. Bo, Y.F. Feng, Y.H. Huang, J.Q. Zhou, Journal of Materials Chemistry C 9, 1051–1061 (2021)

    Article  CAS  Google Scholar 

  24. X.Y. Huang, P.K. Jiang, Adv Mater 27, 546–554 (2015)

    Article  CAS  Google Scholar 

  25. J.M. Zhu, X.Y. Ji, M. Yin, S.Y. Guo, J.B. Shen, Compos. Sci. Technol. 144, 79–88 (2017)

    Article  CAS  Google Scholar 

  26. X.W. Cao, W.J. Zhao, X.J. Gong, D.L. Zhang, Q.J. Su, J.W. Zha, X.M. Yin, W. Wu, R.K.Y. Li, Compos. A Appl. Sci. Manuf. 148, 106486 (2021)

    Article  CAS  Google Scholar 

  27. M.J. Feng, C.H. Zhang, G.T. Zhou, T.D. Zhang, Y. Feng, Q.G. Chi, Q.Q. Lei, IEEE Access 8, 81542–81550 (2020)

    Article  Google Scholar 

  28. L.Z. Guan, L. Weng, X.R. Zhang, Z.J. Wu, Q. Li, L.Z. Liu, J. Mater. Sci. 55, 15238–15251 (2020)

    Article  CAS  Google Scholar 

  29. Y. Xuan, G.C. Jiang, Y.Y. Li, J.S. Wang, H.N. Geng, Colloids Surf., A 422, 50–60 (2013)

    Article  CAS  Google Scholar 

  30. L.Z. Guan, L. Weng, Q. Li, X.R. Zhang, Z.J. Wu, Y.Y. Ma, Mater. Des. 197, 109241 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial supports from the National Natural Science Foundation of China (51677045, 51177030), the Natural Science Foundation of Heilongjiang Province (E201224), and Harbin Science and Technology Innovation Talent program (2016RAQXJ059).

Author information

Authors and Affiliations

Authors

Contributions

YY and HX of this article contributed the same. YY performed experimental design and writing-review and editing. HX involved in analysis of experimental data. XW participated in data curation. LG and ZW involved in investigation. XZ provided the experimental analysis suggestion. LW performed resources and supervision.

Corresponding author

Correspondence to Ling Weng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Xu, H., Wang, X. et al. Investigation of morphology and dielectric properties of PVDF composite films reinforced with MWCNT@PDA core–shell nanorods. J Mater Sci: Mater Electron 33, 6842–6855 (2022). https://doi.org/10.1007/s10854-022-07862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07862-1

Navigation