Skip to main content
Log in

Barium Titanate-reinforced Acrylonitrile-Butadiene Rubber: Synergy Effect of Carbon-based Secondary Filler

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Acrylonitrile rubber (NBR) composites filled with barium titanate (BT) were prepared using an internal mixer and a two-roll mill. Also, a secondary filler, namely carbon nanotubes (CNT), was added in order to find a potential synergistic blend ratio of BT and CNT. The cure characteristics, tensile and dielectric properties (dielectric constant and dielectric loss) of the composites were determined. It was found that NBR/BT composites with CNT secondary filler, at a proper BT:CNT ratio, exhibited shorter scorch time (ts1) and cure time (tc90) together with superior tensile properties and reinforcement efficiency, relative to the one with only the primary filler. In addition, the NBR/BT-CNT composite with 80 phr BT and 1–2 phr CNT had dielectric constant of 100–500, dielectric loss of 12–100 and electrical conductivity below 10−4 S/m together with high thermal stability. Thus, with a proper BT:CNT mix and filler loading, we can produce mechanically superior rubber composites that are easy to process and low-cost, for flexible dielectric materials application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, T.; Zha, J. W.; Cui, R. Y.; Fan, B. H.; Yuan, J. K.; Dang, Z. M. Improving dielectricproperties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. J. Appl. Mater. Interfaces 2011, 3, 2184–2188.

    Article  CAS  Google Scholar 

  2. Tan, Y. J.; Liang, Y. R.; Hu, G. S.; Wang, Y. Q.; Lu, Y. L.; Zhang, L. Q. Structure and properties of isobutylene-isoprene rubber/swollen organoclay nanocomposites prepared by shear mixing. Chinese J. Polym. Sci. 2011, 29, 225–231.

    Article  CAS  Google Scholar 

  3. Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Yang, W. H.; Sun, R.; Wong, C. P.; Liao, W. H. Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites. Compos. Sci. Technol. 2017, 141, 48–55.

    Article  CAS  Google Scholar 

  4. Kumar, G. S.; Vishnupriya, D.; Chary, K. S.; Patro, T. U. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties. Nanotechology 2016, 27, 385702.

    Article  Google Scholar 

  5. Gupta, S. K.; Pandey, K.; Verma, V.; Mathur, S.; Kumar, V. Dielectric properties of polymethylmethacrylate/barium titanate (PMMA/BaTiO3) nanocomposites. Appl. Polym. Compos. 2013, 1, 47–56.

    Google Scholar 

  6. Singh, S.; Dey, S. S.; Singh, S.; Kumar, N. Preparation and characterization of barium titanate composite film. Mater. Today. 2017, 4, 3300–3307.

    Google Scholar 

  7. Pant, H. C.; Patra, M. K.; Verma, A.; Vadera, S. R.; Kumar, N. Study of the dielectric properties of barium titanate-polymer composites. Acta Mate. 2006, 54, 3163–3169.

    Article  CAS  Google Scholar 

  8. Iijima, M.; Sato, N.; Lenggoro, I. W.; Kamiya, H. Surface modification of BaTiO3 particles by silane coupling agents in different solvents and their effect on dielectric properties of BaTiO3/epoxy composites. Colloi. Surf. A: Physicochem. Eng. Asp. 2009, 352, 88–93.

    Article  CAS  Google Scholar 

  9. Phan, T. T. M.; Chu, N. C.; Luu, V. B.; Xuan, H. N.; Martin, I.; Carriere, P. The role of epoxy matrix occlusions within BaTiO3 nanoparticles on the dielectric properties of functionalized BaTiO3/epoxy nanocomposites. Compos. A: Appl. Sci. Manuf. 2016, 90, 528–535.

    Article  CAS  Google Scholar 

  10. Salaeh, S.; Muensit, N.; Bomlai, P.; Nakason, C. Ceramic/natural rubber composites: influence types of rubber and ceramic materials on curing, mechanical, morphological, and dielectric properties. Adv. Mater. Res-Switz. 2011, 46, 1723–1731.

    CAS  Google Scholar 

  11. Gonzalez, N.; Tomara, GN.; Psarras, G. C.; Riba, J. R.; Armelin, E. Dielectric response of vulcanized natural rubber containing BaTiO3 filler: the role of particle functionalization. Eur. Polym. J. 2017, 97, 57–67.

    Article  CAS  Google Scholar 

  12. Asimakopoulos, I.; Psarras, G.; Zoumpoulakis, L. Barium titanate/polyester resin nanocomposites: development, structure-properties relationship and energy storage capability. Express Polym. Lett. 2014, 8, 692–707.

    Article  CAS  Google Scholar 

  13. Chameswary, J.; Sebastian, M. Preparation and properties of BaTiO3 filled butyl rubber composites for flexible electronic circuit applications. J. Mater. Sci. 2015, 26, 4629–4637.

    CAS  Google Scholar 

  14. Bele, A.; Cazacu, M.; Stiubianu, G.; Vlad, S.; Ignat, M. Polydimethylsiloxane-barium titanate composites: preparation and evaluation of the morphology, moisture, thermal, mechanical and dielectric behavior. Compos. B Eng. 2015, 68, 237–245.

    Article  CAS  Google Scholar 

  15. Jiang, L.; Betts, A.; Kennedy, D.; Jerrams, S. Improving the electromechanical performance of dielectric elastomers using silicone rubber and dopamine coated barium titanate. Mater. Des. 2015, 85, 733–742.

    Article  CAS  Google Scholar 

  16. Namitha, L.; Sebastian, M. High permittivity ceramics loaded silicone elastomer composites for flexible electronics applications. Ceram. Int. 2017, 43, 2994–3003.

    Article  CAS  Google Scholar 

  17. Ziegmann, A.; Schubert, D. W. Influence of the particle size and the filling degree of barium titanate filled silicone elastomers used as potential dielectric elastomers on the mechanical properties and the crosslinking density. Mater. Today. 2018, 14, 90–98.

    CAS  Google Scholar 

  18. Han, W.; Yoo, B.; Kwon, K. H.; Cho, H. H.; Park, H. H. Fluorine ligand exchange effect in poly(vinylidenefluoride-cohexafluoropropylene) with embedded fluorinated barium titanate nanoparticles. Thin Solid Films 2016, 619, 17–24.

    Article  CAS  Google Scholar 

  19. Defebvin, J.; Barrau, S.; Lyskawa, J.; Woisel, P.; Lefebvre, J. M. Influence of nitrodopamine-functionalized barium titanate content on the piezoelectric response of poly(vinylidene fluoride) based polymer-ceramic composites. Compos. Sci. Technol. 2017, 147, 16–21.

    Article  CAS  Google Scholar 

  20. Yaqoob, U.; Uddin, A. I.; Chung, G. S. A novel tri-layer flexible piezoelectric nanogenerator based on surface-modified graphene and PVDF-BaTiO3 nanocomposites. Appl. Surf. Sci. 2017, 405, 420–426.

    Article  CAS  Google Scholar 

  21. Li, H. Z.; Li, W. Z.; Yang, Y.J.; Tai, H. L.; Du, X. S.; Gao, R. Y.; Li, S. Y. Pyroelectric performances of 1–3 ferroelectric composites based on barium titanate nanowires/polyvinylidene fluoride. Ceram. Int. 2018, 44, 19254–61.

    Article  CAS  Google Scholar 

  22. Padalia, D.; Bisht, G.; Johri, U.; Asokan, K. Fabrication and characterization of cerium doped barium titanate/PMMA nanocomposites. Sol. Sci. 2013, 19, 122–129.

    Article  CAS  Google Scholar 

  23. Su, J.; Zhang, J. Improvement of mechanical and dielectrical properties of ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3) by layered mica and graphite flakes. Compos. B Eng. 2017, 112, 148–157.

    Article  CAS  Google Scholar 

  24. Qi, F.; Chen, N.; Wang, Q. Preparation of PA11/BaTiO3 nanocomposite powders with improved processability, dielectric and piezoelectric properties for use in selective laser sintering. Mater. Des. 2017, 131, 135–143.

    Article  CAS  Google Scholar 

  25. Zhu, S.; Guo, J.; Zhang, J. Enhancement of mechanical strength associated with interfacial tension between barium titanate and acrylonitrile-butadiene rubber with different acrylonitrile contents by surface modification. J. Appl. Polym. Sci. 2018, 135, 45936.

    Article  Google Scholar 

  26. Liu, J.; Gu, H.; Liu, Q.; Ren, L.; Li, G. An intelligent material for tissue reconstruction: the piezoelectric property of polycaprolactone/barium titanate composites. Mater. Lett. 2019, 236, 686–689.

    Article  CAS  Google Scholar 

  27. Ma, W. L.; Cai, Z. H.; Zhang, Y.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Li, G. H.; Huang, Y. An overview of stretchable supercapacitors based on carbon nanotube and graphene. Chinese J. Polym. Sci. 2020, 38, 491–505.

    Article  CAS  Google Scholar 

  28. Yang, J. H.; Xie, X.; He, Z. Z.; Lu, Y.; Qi, X. D.; Wang, Y. Graphene oxide-tailored dispersion of hybrid barium titanate@polypyrrole particles and the dielectric composites. Chem. Eng. J. 2019, 355, 137–149.

    Article  CAS  Google Scholar 

  29. Wu, C.; Huang, X.; Wu, X.; Yu, J.; Xie, L.; Jiang, P. TiO2-nanorod decorated carbon nanotubes for high-permittivity and low-dielectric-loss polystyrene composites. Compos. Sci. Technol. 2012, 72, 521–527.

    Article  CAS  Google Scholar 

  30. Zhang, J.; Zhang, H.; Wang, S.; Liu, M. Antioxidant-loaded carbon nanotube to sustain a long-term aging-protection for acrylonitrile-butadiene rubber. Polym. Degrad. Stabil. 2017, 144, 93–99.

    Article  CAS  Google Scholar 

  31. Hayashida, K.; Matsuoka, Y. Highly enhanced dielectric constants of barium titanate-filled polymer composites using polymergrafted carbon nanotube matrix. Carbon 2013, 60, 506–513.

    Article  CAS  Google Scholar 

  32. Yu, C. R.; Wu, D. M.; Liu, Y.; Qiao, H.; Yu, Z. Z.; Dasari, A.; Du, X. S.; Mai, Y. W. Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Compos. Sci. Technol. 2011, 71, 1706–1712.

    Article  CAS  Google Scholar 

  33. Qi, F.; Chen, N.; Wang, Q. Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO3/CNT ternary nanocomposites. Mater. Des. 2018, 143, 72–80.

    Article  CAS  Google Scholar 

  34. Guan, S.; Li, H.; Zhao, S.; Guo, L. Novel three-component nanocomposites with high dielectric permittivity and low dielectric loss co-filled by carboxyl-functionalized multi-walled nanotube and BaTiO3. Compos. Sci. Technol. 2018, 158, 79–85.

    Article  CAS  Google Scholar 

  35. Sobia, I.; Muhammad, S.; Ayesha, K.; Sedra, T. M.; Jaweria, A.; Iram, B. A review featuring fabrication, properties and applications of carbon nanotubes (CNTs) reinforced polymer and epoxy nanocomposites. Chinese J. Polym. Sci. 2018, 36, 445–461.

    Article  Google Scholar 

  36. Fan, B.; Bai, J. Composites of hybrids BaTiO3/carbon nanotubes/polyvinylidene fluoride with high dielectric properties. J. Phys. D-Appl. Phys. 2015, 48, 455303.

    Article  Google Scholar 

  37. Fan, B.; Bedoui, F.; Weigand, S.; Bai, J. Conductive network and β polymorph content evolution caused by thermal treatment in carbon nanotubes-BaTiO3 hybrids reinforced polyvinylidene fluoride composites. J. Phys. Chem. C 2016, 120, 9511–9519.

    Article  CAS  Google Scholar 

  38. Jin, Y.; Xia, N.; Gerhardt, R. A. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy 2016, 30, 407–416.

    Article  CAS  Google Scholar 

  39. Fan, B.; Lu, X.; Dang, Z.; Deng, Y.; Zhou, X.; He, D.; Bai, J. Improved dispersion of carbon nanotubes in poly(vinylidene fluoride) composites by hybrids with core-shell structure. J. Appl. Polym. Sci. 2018, 135, 1–10.

    Article  Google Scholar 

  40. Joseph, N.; Janardhanan, C.; Sebastian, M. T. Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites. Compos. Sci. Technol. 2014, 101, 139–144.

    Article  CAS  Google Scholar 

  41. Kumar, V,; Kumar, A.; Wu, R. R.; Lee, D. J. Room-temperature vulcanized silicone rubber/barium titanateebased highperformance nanocomposite for energy harvesting. Mater. Today Chem. 2020, 16, 1–8.

    Google Scholar 

  42. Bizhani, H.; Katbab, A. A.; Hernandez, E. L.; Miranda, J. M.; Manchado, M. A. L.; Verdejo, R. Preparation and characterization of highly elastic foams with enhanced electromagnetic wave absorption based on ethylene-propylene-diene-monomer rubber filled with barium titanate/multiwall carbon nanotube hybrid. Polymer 2020, 12, 1–15.

    Google Scholar 

  43. Nakaramontri, Y.; Pichaiyut, S.; Wisunthorn, S.; Nakason, C. Hybrid carbon nanotubes and conductive carbon black in natural rubber composites to enhance electrical conductivity by reducing gaps separating carbon nanotube encapsulates. Eur. Polym. J. 2017, 90, 467–484.

    Article  CAS  Google Scholar 

  44. Dief, M. A.; Ali, Z.; Rozik, N. N.; Raslan, M.; Sadek, K. U. Electrical and mechanical properties of nitrile rubber (NR) filled with industrial waste and by product from manufacture of ferrosilicon alloys in egyptian chemical industries company. Egypt. J. Chem. 2017, 60, 905–918.

    Google Scholar 

  45. Zhi, X.; Mao, Y.; Yu, Z.; Wen, S.; Li, Y.; Zhang, L.; Chan, T. W.; Liu, L. β-Aminopropyl triethoxysilane functionalized graphene oxide for composites with high dielectric constant and low dielectric loss. Compos. A-Appl. S. 2015, 76, 194–202.

    Article  CAS  Google Scholar 

  46. Ruan, M.; Yang, D.; Guo, W.; Zhang, L.; Li, S.; Shang, Y.; Wu, Y.; Zhang, M.; Wang, H. Improved dielectric properties, mechanical properties, and thermal conductivity properties of polymer composites via controlling interfacial compatibility with bio-inspired method. Appl. Surf. Sci. 2018, 439, 186–195.

    Article  CAS  Google Scholar 

  47. Nabil, H.; Ismail, H.; Rashid, A. A. Effects of partial replacement of commercial fillers by recycled poly(ethylene terephthalate) powder on the properties of natural rubber composites. J. Vinyl Addit. Technol. 2012, 18, 139–146.

    Article  CAS  Google Scholar 

  48. Hwu, J. M.; Yu, W. H.; Yang, W. C.; Chen, Y. W.; Chou, Y. Y. Characterization of dielectric barium titanate powders prepared by homogeneous precipitation chemical reaction for embedded capacitor applications. Mater. Res. Bull. 2005, 40, 1662–1679.

    Article  CAS  Google Scholar 

  49. Zhan, J. Y.; Gian, G. F.; Wu, Z. P.; Qi, S. L.; Wu, D. Z. Preparation of polyimide/BaTiO3/Ag nanocomposite films via in situ technique and study of their dielectric behavior. Chinese J. Polym. Sci. 2014, 32, 424–431.

    Article  CAS  Google Scholar 

  50. Nakaramontri, Y.; Kummerlöwe, C.; Nakason, C.; Vennemann, N. The effect of surface functionalization of carbon nanotubes on the properties of natural rubber/carbon nanotube composites. Polym. Compos. 2014, 36, 2113–2122.

    Article  Google Scholar 

  51. Nakaramontri, Y.; Kummerlöwe, C.; Nakason, C.; Vennemann, N. Influence of modified natural rubber on properties of natural rubber-carbon nanotubes composites. Rubber Chem. Technol. 2015, 88, 199–218.

    Article  CAS  Google Scholar 

  52. Pötschke, P.; Dudkin, S. M.; Alig, I. Dielectric spectroscopy on melt processed polycarbonate-multiwalled carbon nanotube composites. Polymer 2003, 44, 5023–5030.

    Article  Google Scholar 

  53. Bokobza, L. Enhanced electrical and mechanical properties of multiwall carbon nanotube rubber composites. Polym. Adv. Technol. 2012, 23, 1543–1549.

    Article  CAS  Google Scholar 

  54. Szadkowski, B.; Marzec, A.; Zaborski, M. Effect of different carbon fillers on the properties of nitrile rubber composites. Compos. Interface 2018, 8, 729–750.

    Google Scholar 

  55. Ismail, H.; Ramly, A.; Othman, N. The effect of carbon black/multiwall carbon nanotube hybrid fillers on the properties of natural rubber nanocomposites. Polym. Plas. Technol. Eng. 2011, 50, 660–666.

    Article  CAS  Google Scholar 

  56. Amin, L. M. N.; Ismail, H.; Nadras, O. Comparative study of bentonite filled acrylonitrile butadiene rubber and carbon black filled nbr composites properties. Int. J. Auto. Mecha. Eng. 2018, 15, 5468–5479.

    Article  CAS  Google Scholar 

  57. Sadek, E. M.; El-Nashar, D. E. Preparation and characterization of nitrile butadiene rubber-nanoclay composites with maleic acid anhydride as compatibilizer. Part I: rheometric and swelling characteristics. High Perform. Polym. 2012, 24, 654–663.

    Article  CAS  Google Scholar 

  58. Subramaniam, K.; Das, A.; Stöckelhuber, K. W.; Heinrich, G. Elastomer composites based on carbon nanotubes and ionic liquid. Rubber Chem. Technol. 2018, 86, 367–400.

    Article  Google Scholar 

  59. Kaewsakul, W.; Sahakaro, K.; Dierkes, W. K.; Noordermeer, J. W. Optimization of mixing conditions for silica-reinforced natural rubber tire tread compounds. Rubber Chem. Technol. 2012, 85, 277–294.

    Article  CAS  Google Scholar 

  60. Nakaramontri, Y.; Wisunthorn, S.; Pichaiyut, S.; Nakason, C. Hybrid carbon nanotubes and conductive carbon black in natural rubber composites to enhance electrical conductivity by reducing gaps separating carbon nanotube encapsulates. Eur. Polym. J. 2017, 90, 467–484.

    Article  CAS  Google Scholar 

  61. Nakaramontri, Y.; Kummerlöwe, C.; Wisunthorn, S.; Pichaiyut, S.; Vennemann, N.; Nakason, C. Electron tunneling in carbon nanotubes and carbon black hybrid filler-filled natural rubber composites: influence of non-rubber components. Polym. Compos. 2018, 39, 1237–1250.

    Article  Google Scholar 

  62. Sulaiman, M. A.; Hutagalung, S. D.; Ahmad, Z. A.; Ain, M. F. Investigation of grain size effect on the impedance of CaCu3Ti4O12 from 100 Hz to 1 GHz of frequency. Adv. Mater. 2013, 620, 230–235.

    Google Scholar 

  63. Sulaiman, M. A.; Panwiriyarat, W.; Jie, B. L. C.; Masri, M. N.; Yusuff, M. Mechanical and electrical properties of TiO2 loaded vulcanized natural rubber. Proc. Mater. 2016, 4, 39–43.

    Google Scholar 

  64. Sulaiman, M. A.; Hutagalung, S. D.; Ain, M. F.; Ahmad, Z. A. Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies. J. Alloy Compd. 2010, 493, 486–492.

    Article  CAS  Google Scholar 

  65. Shehzad, K.; Dang, Z. M.; Ahmad, M. N.; Sagar, R. U. R.; Butt, S.; Farooq, M. U.; Wang, T. B. Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites. Carbon 2013, 54, 105–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the government budget of Prince of Songkla University and Natural Rubber Innovation Research Institute (NR-IRI) (No. SIT610284S), the graduate school of Prince of Songkla University and by Prince of Songkla University, Surat Thani Campus. The authors would like to express their gratitude to Faculty of Science, Department of Chemistry, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand, and to the Faculty of Earth Science, Universiti Malaysia Kelantan for providing their facilities and equipment. We are grateful to Assoc. Prof. Dr. Seppo Karrila for his assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeampon Nakaramontri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chueangchayaphan, W., Luangchuang, P., Chueangchayaphan, N. et al. Barium Titanate-reinforced Acrylonitrile-Butadiene Rubber: Synergy Effect of Carbon-based Secondary Filler. Chin J Polym Sci 39, 725–735 (2021). https://doi.org/10.1007/s10118-021-2528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2528-9

Keywords

Navigation