Skip to main content

Advertisement

Log in

Microstructures, electrical behavior and energy storage properties of Ag@shell/PVDF-based polymers: different effects between an organic polydopamine shell and inorganic zinc oxide shell

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two kinds of 1D core–shell nanorods silver@polydopamine (Ag@PDA) and silver@zinc oxide (Ag@ZnO) were successfully synthesized and doped into polyvinylidene fluoride (PVDF) to fabricate composites. The different surface modification effects between the organic PDA shell and inorganic ZnO shell on structure and dielectric properties of PVDF composites were investigated. Results indicated that the ZnO shell showed a crystalline structure, while the PDA shell is amorphous. Due to the difference in crystal structure of the coating shell, the Ag@ZnO/PVDF composites showed a better dielectric performance than the Ag@PDA/PVDF composites, while the Ag@PDA/PVDF showed excellent mechanical properties. The crystallized structure of ZnO not only promoted the crystal conversion of PVDF molecules, but also effectively limited the movement of charge carriers in composites. In the case of 10wt% fillers' content and before breakdown strength, the energy storage densities of Ag@PDA/PVDF and Ag@ZnO/PVDF composites are 79.53% and 209.2% higher than that of pure PVDF films, respectively. Moreover, the charge/discharge efficiency of Ag@ZnO/PVDF composite is also higher than that of pure PVDF and Ag@PDA/PVDF composite. When testing at 1800 kV/cm electrical strength, the energy storage density of Ag@ZnO/PVDF composite increases to 4.02 J/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Baer E, Zhu L (2017) 50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films. Macromolecules 50:2239–2256. https://doi.org/10.1021/acs.macromol.6b02669

    Article  CAS  Google Scholar 

  2. Gong HH, Miao B, Zhang X, Lu JY, Zhang ZC (2016) High-field antiferroelectric-like behavior in uniaxially stretched poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-grafted-poly (methyl methacrylate) films with high energy density. RSC Adv 6:1589–1599. https://doi.org/10.1039/c5ra22617a

    Article  CAS  Google Scholar 

  3. Opris DM (2018) Polar elastomers as novel materials for electromechanical actuator applications. Adv Mater 30:1703678. https://doi.org/10.1002/adma.201703678

    Article  CAS  Google Scholar 

  4. Palneedi H, Peddigari M, Hwang GT, Jeong DY, Ryu J (2018) High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 28:1803665. https://doi.org/10.1002/adfm.201803665

    Article  CAS  Google Scholar 

  5. Wen RM, Guo JM, Zhao CL, Liu YQ (2018) Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer titania. Adv Mater Interfaces 5:1701088. https://doi.org/10.1002/admi.201701088

    Article  CAS  Google Scholar 

  6. Yang LT, Kong X, Li F et al (2019) Perovskite lead-free dielectrics for energy storage applications. Progr Mater Sci 102:72–108. https://doi.org/10.1016/j.pmatsci.2018.12.005

    Article  CAS  Google Scholar 

  7. Wei HG, Wang H, Xia YJ et al (2018) An overview of lead-free piezoelectric materials and devices. J Mater Chem C 6:12446–12467. https://doi.org/10.1039/c8tc04515a

    Article  CAS  Google Scholar 

  8. Surmenev RA, Orlova T, Chernozem RV et al (2019) Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy 62:475–506. https://doi.org/10.1016/j.nanoen.2019.04.090

    Article  CAS  Google Scholar 

  9. Shi FM, Ma YX, Ma J, Wang PP, Sun WX (2012) Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J Membr Sci 389:522–531. https://doi.org/10.1016/j.memsci.2011.11.022

    Article  CAS  Google Scholar 

  10. Zhou MX, Liang RH, Zhou ZY, Dong XL (2018) Novel BaTiO 3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C 6:8528–8537. https://doi.org/10.1039/c8tc03003k

    Article  CAS  Google Scholar 

  11. Shin EY, Cho HJ, Jung S, Yang C, Noh YY (2018) A high-k fluorinated P (VDF-TrFE)-g-PMMA gate dielectric for high-performance flexible field-effect transistors. Adv Funct Mater 28:1704780. https://doi.org/10.1002/adfm.201704780

    Article  CAS  Google Scholar 

  12. Zhu H, Liu Z, Wang FH (2017) Improved dielectric properties and energy storage density of poly (vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) composite films with aromatic polythiourea. J Mater Sci 52:5048–5059. https://doi.org/10.1007/s10853-016-0742-6

    Article  CAS  Google Scholar 

  13. Zhang J, Liu D, Han Q et al (2019) Mechanically stretchable piezoelectric polyvinylidene fluoride (PVDF)/Boron nitride nanosheets (BNNSs) polymer nanocomposites. Compos Part B Eng 175:107157. https://doi.org/10.1016/j.compositesb.2019.107157

    Article  CAS  Google Scholar 

  14. Wang MJ, Jiao ZY, Chen YP et al (2018) Enhanced thermal conductivity of poly (vinylidene fluoride)/boron nitride nanosheet composites at low filler content. Compos Pt A-Appl Sci Manuf 109:321–329. https://doi.org/10.1016/j.compositesa.2018.03.023

    Article  CAS  Google Scholar 

  15. Bhattacharya G, Fishlock SJ, Pritam A, Roy SS, McLaughlin JA (2020) Recycled red mud–decorated porous 3D graphene for high-energy flexible micro-supercapacitor. Adv Sustain Syst 4:1900133. https://doi.org/10.1002/adsu.201900133

    Article  CAS  Google Scholar 

  16. Kirubasankar B, Murugadoss V, Lin J et al (2018) In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10:20414–20425. https://doi.org/10.1039/c8nr06345a

    Article  CAS  Google Scholar 

  17. Chen H, Ling M, Hencz L et al (2018) Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev 118:8936–8982. https://doi.org/10.1021/acs.chemrev.8b00241

    Article  CAS  Google Scholar 

  18. Shen ZH, Wang JJ, Lin YH, Nan CW, Chen LQ, Shen Y (2018) High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv Mater 30:1704380. https://doi.org/10.1002/adma.201704380

    Article  CAS  Google Scholar 

  19. Prateek VKT, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317. https://doi.org/10.1021/acs.chemrev.5b00495

    Article  CAS  Google Scholar 

  20. Pan ZB, Yao LM, Zhai JW, Fu DZ, Shen B, Wang HT (2017) High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@ Al2O3 nanofibers. ACS Appl Mater Interfaces 9:4024–4033. https://doi.org/10.1021/acsami.6b13663

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhang CH, Feng Y et al (2019) Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56:138–150. https://doi.org/10.1016/j.nanoen.2018.11.044

    Article  CAS  Google Scholar 

  22. Feenstra J, Sodano HA (2008) Enhanced active piezoelectric 0–3 nanocomposites fabricated through electrospun nanowires. J Appl Phys 103:124108. https://doi.org/10.1063/1.2939271

    Article  CAS  Google Scholar 

  23. Wang G, Li JL, Zhang X et al (2019) Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ Sci 12:582–588. https://doi.org/10.1039/c8ee03287d

    Article  CAS  Google Scholar 

  24. Pan ZB, Yao LM, Zhai JW et al (2016) Excellent energy density of polymer nanocomposites containing BaTiO 3@ Al 2 O 3 nanofibers induced by moderate interfacial area. J Mater Chem A 4:13259–13264. https://doi.org/10.1039/c6ta05233a

    Article  CAS  Google Scholar 

  25. Huang XY, Jiang PK (2015) Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater 27:546–554. https://doi.org/10.1002/adma.201401310

    Article  CAS  Google Scholar 

  26. Guan LZ, Liu LZ, Weng L, Zhang XR, Cui WW (2018) Enhancement in energy storage density of polyvinylidene fluoride composites by introduced rod-like core-shell Ag@ Al2O3 nanorods. Polymer 148:39–48. https://doi.org/10.1016/j.polymer.2018.06.010

    Article  CAS  Google Scholar 

  27. He DL, Wang Y, Song SL, Liu S, Luo Y, Deng Y (2017) Polymer-based nanocomposites employing Bi2S3@ SiO2 nanorods for high dielectric performance: understanding the role of interfacial polarization in semiconductor-insulator core-shell nanostructure. Compos Sci Technol 151:25–33. https://doi.org/10.1016/j.compscitech.2017.08.006

    Article  CAS  Google Scholar 

  28. Wang S, Zhu BC, Liu MJ, Zhang LY, Yu JG, Zhou MH (2019) Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Catal B-Environ 243:19–26. https://doi.org/10.1016/j.apcatb.2018.10.019

    Article  CAS  Google Scholar 

  29. Ouyang WX, Teng F, He JH, Fang XS (2019) Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv Funct Mater 29:1807672. https://doi.org/10.1002/adfm.201807672

    Article  CAS  Google Scholar 

  30. Wu GL, Jia ZR, Cheng YH, Zhang HX, Zhou XF, Wu HJ (2019) Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl Surf Sci 464:472–478. https://doi.org/10.1016/j.apsusc.2018.09.115

    Article  CAS  Google Scholar 

  31. Gu HB, Xu XJ, Dong MY et al (2019) Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. Carbon 147:550–558. https://doi.org/10.1016/j.carbon.2019.03.028

    Article  CAS  Google Scholar 

  32. Lai YX, Zhang CX, Deng Y et al (2019) A novel α-fetoprotein-MIP immunosensor based on AuNPs/PTh modified glass carbon electrode. Chin Chem Lett 30:160–162. https://doi.org/10.1016/j.cclet.2018.07.011

    Article  CAS  Google Scholar 

  33. Li Y, Zhang L, Yu LJ et al (2020) Study of the structure, electrical properties, and energy storage performance of ZnO-modified Ba0. 65Sr0. 245Bi0. 07TiO3 Pb-free ceramics. Ceram Int 46:8–16. https://doi.org/10.1016/j.ceramint.2019.08.111

    Article  CAS  Google Scholar 

  34. Zhang L, Pu YP, Chen M, Wei TC, Peng X (2020) Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem Eng J 383:123154. https://doi.org/10.1016/j.cej.2019.123154

    Article  CAS  Google Scholar 

  35. Zhang L, Song F, Lin X, Wang D (2020) High-dielectric-permittivity silicone rubbers incorporated with polydopamine-modified ceramics and their potential application as dielectric elastomer generator. Mater Chem Phys 241:122373. https://doi.org/10.1016/j.matchemphys.2019.122373

    Article  CAS  Google Scholar 

  36. Yang Z, Wang J, Hu YL, Deng CY, Zhu KJ, Qiu JH (2020) Simultaneously improved dielectric constant and breakdown strength of PVDF/Nd-BaTiO3 fiber composite films via the surface modification and subtle filler content modulation. Compos Pt A-Appl Sci Manuf 128:105675. https://doi.org/10.1016/j.compositesa.2019.105675

    Article  CAS  Google Scholar 

  37. Liang F-X, Gao Y, Xie C, Tong X-W, Li Z-J, Luo L-B (2018) Recent advances in the fabrication of graphene–ZnO heterojunctions for optoelectronic device applications. J Mater Chem C 6:3815–3833. https://doi.org/10.1039/c8tc00172c

    Article  CAS  Google Scholar 

  38. Ding M, Guo Z, Zhou L et al (2018) One-dimensional zinc oxide nanomaterials for application in high-performance advanced optoelectronic devices. Crystals 8:223. https://doi.org/10.3390/cryst8050223

    Article  CAS  Google Scholar 

  39. Duan L, Wang L, Li F, Li F, Sun L (2015) Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands. Account Chem Res 48:2084–2096. https://doi.org/10.1021/acs.accounts.5b00149

    Article  CAS  Google Scholar 

  40. Yu Y, Huang Z, Zhou Y et al (2019) Facile and highly sensitive photoelectrochemical biosensing platform based on hierarchical architectured polydopamine/tungsten oxide nanocomposite film. Biosens Bioelectr 126:1–6. https://doi.org/10.1016/j.bios.2018.10.026

    Article  CAS  Google Scholar 

  41. Gebrekrstos A, Madras G, Bose S (2019) Journey of electroactive β-polymorph of poly (vinylidenefluoride) from crystal growth to design to applications. Cryst Growth Des 19:5441–5456. https://doi.org/10.1021/acs.cgd.9b00381

    Article  CAS  Google Scholar 

  42. Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ (2018) Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev 118:3121–3207. https://doi.org/10.1021/acs.chemrev.7b00613

    Article  CAS  Google Scholar 

  43. Ding F, Pors A, Bozhevolnyi SI (2018) Gradient metasurfaces: a review of fundamentals and applications. Rep Progr Phys 81:026401. https://doi.org/10.1088/1361-6633/aa8732

    Article  CAS  Google Scholar 

  44. Li AB, Singh S, Sievenpiper D (2018) Metasurfaces and their applications. Nanophotonics 7:989–1011. https://doi.org/10.1515/nanoph-2017-0120

    Article  Google Scholar 

  45. Pusty M, Sinha L, Shirage P (2018) A flexible self-poled piezoelectric nanogenerator based on a rGO–Ag/PVDF nanocomposite. N J Chem 43:284–294. https://doi.org/10.1039/C8NJ04751K

    Article  Google Scholar 

  46. Li J, Yin J, Yang C et al (2019) Enhanced dielectric performance and energy storage of PVDF-HFP-based composites induced by surface charged Al2O3. J Polym Sci Part B Polym Phys 57:574–583. https://doi.org/10.1002/polb.24814

    Article  CAS  Google Scholar 

  47. Wang S, Huang X, Wang G, Wang Y, Jinliang H, Jiang P (2015) Increasing the energy efficiency and breakdown strength of high-energy-density polymer nanocomposites by engineering the Ba0.7Sr0.3TiO3 nanowire surface via reversible addition–fragmentation chain transfer polymerization. J Phys Chem C 119:25307. https://doi.org/10.1021/acs.jpcc.5b09066

    Article  CAS  Google Scholar 

  48. Prateek RB, Siddiqui S, Garg A, Gupta RK (2019) Significantly enhanced energy density by tailoring the interface in hierarchically structured TiO2–BaTiO3–TiO2 nanofillers in PVDF-based thin-film polymer nanocomposites. ACS Appl Mater Interfaces 11:14329–14339. https://doi.org/10.1021/acsami.9b01359

    Article  CAS  Google Scholar 

  49. Sarkarat M, Meddeb A, Komarneni S, Ounaies Z (2019) Impact of stabilizer on in situ formation of Ag nanoparticles in polyvinylidene fluoride (PVDF) matrix. MRS Adv 4:2103–2108. https://doi.org/10.1557/adv.2019.236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51677045, 51603057) and the Harbin Science and Technology Innovation Talents Project (No. 2016RAQXJ059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Weng or Lizhu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, L., Weng, L., Zhang, X. et al. Microstructures, electrical behavior and energy storage properties of Ag@shell/PVDF-based polymers: different effects between an organic polydopamine shell and inorganic zinc oxide shell. J Mater Sci 55, 15238–15251 (2020). https://doi.org/10.1007/s10853-020-05081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05081-9

Navigation