Skip to main content

Advertisement

Log in

Graphene@poly(dopamine)-Ag core–shell nanoplatelets as fillers to enhance the dielectric performance of polymer composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new type of core–shell graphene@poly(dopamine)-Ag nanoplatelets was developed to improve the dielectric properties of thermoplastic polyurethane (TPU) nanocomposites. Dopamine was oxidatively polymerized to form a polydopamine (PDA) layer on the surface of graphene nanosheets (Gns), and then Ag nanoparticles were chemically reduced by silver nitrate and uniformly embedded on the surface of PDA. This obtained Gns@PDA-Ag core–shell nanoplatelets were filled into TPU to prepare a flexible dielectric material. The microstructure and dielectric performances were tested. Results indicated that the Gns@PDA-Ag core–shell nanoplatelets were evenly dispersed in TPU matrix. Moreover, the addition of Gns@PDA-Ag core–shell nanoplatelets could effectively improve the dielectric constant of the composite. Under low-frequency test conditions, the dielectric constant of the TPU/Gns@PDA-Ag (4 wt%) nanocomposite was 117.81, which was about 14 times higher than that of pure TPU. Theoretical analysis shows that the PDA shell not only promoted the uniform dispersion of Gns in TPU matrix, but also enhanced the interface bonding between the nanoplatelets and the TPU matrix. Moreover, introducing ultra-small Ag nanoparticles had effectively decreased the dielectric loss and conductivity of TPU/Gns@PDA-Ag composites due to its coulomb blockade and quantum trapped carrier structure effects, which resulted in the improvement of energy storage characteristics of composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Azizi A, Gadinski MR, Li Q et al (2017) High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv Mater 29:1701864

    Article  CAS  Google Scholar 

  2. Yang Y, Sun H, Yin D et al (2015) High performance of polyimide/CaCu3Ti4O12@Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. J Mater Chem A 3:4916–4921

    Article  CAS  Google Scholar 

  3. Wang Z, Wang T, Fang M, Wang C, Xiao Y, Pu Y (2017) Enhancement of dielectric and electrical properties in BFN/Ni/PVDF three-phase composites. Compos Sci Technol 146:139–146

    Article  CAS  Google Scholar 

  4. Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci Part B Polym Phys 49:1421–1429

    Article  CAS  Google Scholar 

  5. Vaklev NL, Muller R, Muir BV et al (2014) High-performance flexible bottom-gate organic field-effect transistors with gravure printed thin organic dielectric. Adv Mater Interfaces 1:1–6

    Article  CAS  Google Scholar 

  6. Dang Z-M, Yuan J-K, Zha J-W, Zhou J-W, Li S-T, Hu G-H (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57:660–723

    Article  CAS  Google Scholar 

  7. Hao Y, Wang X, Bi K et al (2017) Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy 31:49–56

    Article  CAS  Google Scholar 

  8. Zhang X, Shen Y, Zhang Y et al (2015) Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv Mater 27:819–824

    Article  CAS  Google Scholar 

  9. Nayak S, Sahoo B, Kumar Chaki T, Khastgir D (2013) Development of polyurethane–titania nanocomposites as dielectric and piezoelectric material. RSC Adv 3:2620–2631

    Article  CAS  Google Scholar 

  10. Cho S, Lee JS, Jang J (2015) Enhanced crystallinity, dielectric, and energy harvesting performances of surface-treated barium titanate hollow nanospheres/PVDF nanocomposites. Adv Mater Interfaces 2:1500098

    Article  CAS  Google Scholar 

  11. Zhao H, Wang D-R, Zha J-W, Zhao J, Dang Z-M (2013) Increased electroaction through a molecular flexibility tuning process in TiO2-polydimethylsilicone nanocomposites. J Mater Chem A 1:3140–3145

    Article  CAS  Google Scholar 

  12. Liang CB, Song P, Qiu H et al (2019) Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11:22590–22598

    Article  CAS  Google Scholar 

  13. Bang S, Lim J, Chun S, Park W (2019) A flexible graphene-polydimethylsiloxane nanocomposite force sensor with linear response across a wide pressure detection range. J Nanosci Nanotechnol 19:1630–1634

    Article  CAS  Google Scholar 

  14. Liu S, Tian M, Yan B, Yao Y, Zhang L, Nishi T, Ning N (2015) High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes. Polymer 56:375–384

    Article  CAS  Google Scholar 

  15. Dascalu M, Dünki SJ, Quinsaat J-EQ, Ko YS, Opris DM (2015) Synthesis of silicone elastomers containing trifluoropropyl groups and their use in dielectric elastomer transducers. RSC Adv 5:104516–104523

    Article  CAS  Google Scholar 

  16. Romasanta LJ, Hernández M, López-Manchado MA, Verdejo R (2011) Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale Res Lett 6:508

    Article  CAS  Google Scholar 

  17. Bar-Cohen Y, Cameron CG, Underhill RS, Rawji M, Szabo JP (2004) Conductive filler: elastomer composites for Maxwell stress actuator applications. In: Smart structures and materials 2004: electroactive polymer actuators and devices (EAPAD), vol 5385, pp 51–59

  18. Jung HM, Kang J-H, Yang SY, Won JC, Kim YS (2010) Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem Mater 22:450–456

    Article  CAS  Google Scholar 

  19. Hu W, Zhang SN, Niu X, Liu C, Pei Q (2014) An aluminum nanoparticle–acrylate copolymer nanocomposite as a dielectric elastomer with a high dielectric constant. J Mater Chem C 2:1658–1666

    Article  CAS  Google Scholar 

  20. Pan Z, Yao L, Zhai J, Fu D, Shen B, Wang H (2017) High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl Mater Interfaces 9:4024–4033

    Article  CAS  Google Scholar 

  21. Tchoul MN, Fillery SP, Koerner H, Drummy LF, Oyerokun FT, Mirau PA, Durstock MF, Vaia RA (2010) Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem Mater 22:1749–1759

    Article  CAS  Google Scholar 

  22. Shen Y, Lin Y, Li M, Nan CW (2007) High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv Mater 19:1418–1422

    Article  CAS  Google Scholar 

  23. Chen K, Tian Q, Tian C, Yan G, Cao F, Liang S, Wang X (2017) Mechanical reinforcement in thermoplastic polyurethane nanocomposite incorporated with polydopamine functionalized graphene nanoplatelet. Ind Eng Chem Res 56:11827–11838

    Article  CAS  Google Scholar 

  24. Hwang SH, Kang D, Ruoff RS, Shin HS, Park Y-B (2014) Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing. ACS Nano 8:6739–6747

    Article  CAS  Google Scholar 

  25. Tang YS, Dong WC, Tang L, Zhang YK, Kong J, Gu JW (2018) Fabrication and investigations on the polydopamine/KH-560 functionalized PBO fibers/cyanate ester wave-transparent composites. Compos Commun 8:36–41

    Article  Google Scholar 

  26. Chen T, Qiu J, Zhu K, Li J, Wang J, Li S, Wang X (2015) Achieving high performance electric field induced strain: a rational design of hyperbranched aromatic polyamide functionalized graphene-polyurethane dielectric elastomer composites. J Phys Chem B 119:4521–4530

    Article  CAS  Google Scholar 

  27. Wu C, Huang X, Wang G, Wu X, Yang K, Li S, Jiang P (2012) Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J Mater Chem 22:7010–7019

    Article  CAS  Google Scholar 

  28. Yang D, Tian M, Li D, Wang W, Ge F, Zhang L (2013) Enhanced dielectric properties and actuated strain of elastomer composites with dopamine-induced surface functionalization. J Mater Chem A 1:12276–12284

    Article  CAS  Google Scholar 

  29. Aleiner IL, Brouwer PW, Glazman LI (2002) Glazman, quantum effects in coulomb blockade. Phys Rep 358:309–440

    Article  CAS  Google Scholar 

  30. König D, Hiller D, Gutsch S, Zacharias M (2014) Energy offset between silicon quantum structures: interface impact of embedding dielectrics as doping alternative. Adv Mater Interfaces 1:1400359

    Article  CAS  Google Scholar 

  31. Hwang S-H, Park Y-B, Hur S-H, Chae HG (2018) Pt nanoparticle-decorated reduced graphene oxide hydrogel for high-performance strain sensor: tailoring piezoresistive property by controlled microstructure of hydrogel. ACS Appl Nano Mater 1:2836–2843

    Article  CAS  Google Scholar 

  32. Chu Y, Wang Z, Pan Q (2014) Constructing robust liquid marbles for miniaturized synthesis of graphene/Ag nanocomposite. ACS Appl Mater Interfaces 6:8378–8386

    Article  CAS  Google Scholar 

  33. Yoon Y, Samanta K, Lee H, Lee K, Tiwari AP, Lee J, Yang J, Lee H (2015) Highly stretchable and conductive silver nanoparticle embedded graphene flake electrode prepared by in situ dual reduction reaction. Sci Rep 5:14177

    Article  CAS  Google Scholar 

  34. Luo S, Yu S, Sun R, Wong CP (2014) Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Appl Mater Interfaces 6:176–182

    Article  CAS  Google Scholar 

  35. Luo S, Yu S, Fang F, Lai M, Sun R, Wong CP (2014) Critical interparticle distance for the remarkably enhanced dielectric constant of BaTiO3-Ag hybrids filled polyvinylidene fluoride composites. Appl Phys Lett 104:252903

    Article  CAS  Google Scholar 

  36. Zhang Z, Zhang J, Zhang B, Tang J (2012) Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 5:118–123. https://doi.org/10.1039/C2NR32092D

    Article  Google Scholar 

  37. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  Google Scholar 

  38. Yan J, Yang L, Lin M-F, Ma J, Lu X, Lee PS (2013) Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Small 9:596–603

    Article  CAS  Google Scholar 

  39. Bogle KA, Dhole SD, Bhoraskar VN (2006) Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology 17:3204–3208

    Article  CAS  Google Scholar 

  40. Xie L, Huang X, Li B-W, Zhi C, Tanaka T, Jiang P (2013) Core–satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss. Phys Chem Chem Phys 15:17560–17569

    Article  CAS  Google Scholar 

  41. Zhang L, Wu J, Wang Y, Long Y, Zhao N, Xu J (2012) Combination of bioinspiration: a general route to superhydrophobic particles. J Am Chem Soc 134:9879–9881

    Article  CAS  Google Scholar 

  42. Wang Z, Liu J, Wu S, Wang W, Zhang L (2010) Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers. Phys Chem Chem Phys 12:3014–3030

    Article  CAS  Google Scholar 

  43. Stauffer D, Aharony A (1994) Percolation theory: an introduction. Phys Today 46:122–123

    Google Scholar 

  44. Wu EY, Sune J, Lai W (2002) On the Weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination. Part II: experimental results and the effects of stress conditions. IEEE Trans Electron Dev 49:2141–2150

    Article  CAS  Google Scholar 

  45. Huang X, Xie L, Hu Z, Jiang P (2011) Influence of BaTiO3 nanoparticles on dielectric, thermophysical and mechanical properties of ethylene-vinyl acetate elastomer/BaTiO3 microcomposites. IEEE Trans Dielectr Electr Insul 18:375–383

    Article  CAS  Google Scholar 

  46. Han YX, Shi XT, Yang XT et al (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944. https://doi.org/10.1016/j.compscitech.2019.107944

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51677045, 51603057) and the Harbin science and Technology Innovation Talents Project (No. 2016RAQXJ059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Weng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Weng, L., Zhang, X. et al. Graphene@poly(dopamine)-Ag core–shell nanoplatelets as fillers to enhance the dielectric performance of polymer composites. J Mater Sci 55, 7665–7679 (2020). https://doi.org/10.1007/s10853-020-04557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04557-y

Navigation