Skip to main content
Log in

Enhanced dielectric properties of high glass transition temperature PDCPD/CNT composites by frontal ring-opening metathesis polymerization

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Frontal ring-opening metathesis polymerization was used to in situ prepare polydicyclopentadiene (PDCPD)/carbon nanotubes (CNTs) and PDCPD/CNT-NH2 composites with high glass transition temperature. Compared with PDCPD/CNT composites, PDCPD/CNT-NH2 composites have similar dielectric constants, but their loss tangent significantly reduces. The uniform dispersion of CNT-NH2 leads to the formation of dielectric interfacial polarization. The results of dynamic mechanical analysis (DMA) showed that the glass transition temperature (Tg) of the composites increased with the increase of filler. With the increase of the filler, the elongation at break of the PDCPD/CNT composites decreased, while the elongation at break of PDCPD/CNT-NH2 composites increased, reaching up to 17% because of the stronger interfacial affinity. The PDCPD/CNT-NH2 composites exhibited high dielectric permittivity (47.5 at a frequency of 100 Hz) that originates from the interfacial polarization between PDCPD and CNT-NH2, and the nonconducting –NH2 groups can prevent the conductive path of CNTs and support a low loss tangent (0.096).

Graphical abstract

High Tg PDCPD/CNT-NH2 composite with enhanced dielectric properties was prepared by a simple and quick one-step reaction method of FROMP. Keywords: Polydicyclopentadiene; Composites; Carbon nanotubes; Dielectric properties, Interfacial polarization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hu Y, Li X, Lang AW, Zhang Y, Nutt SR (2016) Water immersion aging of polydicyclopentadiene resin and glass fiber composites. Polym Degrad Stabil 124:35–42

    Article  CAS  Google Scholar 

  2. Kim HG, Son HJ, Lee DK, Kim DW, Park HJ, Cho DH (2017) Optimization and analysis of reaction injection molding of polydicyclopentadiene using response surface methodology. Kor J Chem Eng 34:2099–2109

    Article  CAS  Google Scholar 

  3. Davidson TA, Wagener KB (1998) The polymerization of dicyclopentadiene: an investigation of mechanism. J Mol Catal A-Chem 133:67–74

    Article  CAS  Google Scholar 

  4. Robertson ID, Dean LM, Rudebusch GE, Sotto NR, Moore JS (2017) Alkyl phosphite inhibitors for frontal ring-opening metathesis polymerization greatly increase pot life. ACS Macro Lett 6:609–612

    Article  CAS  Google Scholar 

  5. Dr QZY, Zhang WF, Lu GD, Dr XTS, Dr CCG (2006) Frontal polymerization synthesis of starch-grafted hydrogels: effect of temperature and tube size on propagating front and properties of hydrogels. Chem Eur J 12:3303–3309

    Article  CAS  Google Scholar 

  6. Xin G, Wang CF, Yuan F, Li C, Chen S (2011) Fast synthesis of versatile nanocrystal-embedded hydrogels toward the sensing of heavy metal ions and organoamines. J Mater Chem 21:1124–1129

    Article  Google Scholar 

  7. Chekanov YA, Pojman JA (2000) Preparation of functionally gradient materials via frontal polymerization. J Appl Polym Sci 78:2398–2404

    Article  CAS  Google Scholar 

  8. Robertson ID, Yourdkhani M, Centellas PJ, Aw JE, Ivanoff DG et al (2018) Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557:223–227

    Article  CAS  Google Scholar 

  9. Liu H, Wei H, Moore JS (2019) Frontal ring-opening metathesis copolymerization: deviation of front velocity from mixing rules. ACS Macro Lett 8:846–851

    Article  CAS  Google Scholar 

  10. Kim C, Teng H, Tucker CL, White SR (1995) The continuous cuing process for thermoset polymer composites. Part 1: modeling and demonstration. J Compos Mater 29:1222–1253

    Article  CAS  Google Scholar 

  11. Sanna R, Alzari V, Nuvoli D, Scognamillo S, Marceddu S, Mariani A (2012) Polymer hydrogels of 2-hydroxyethyl acrylate and acrylic acid obtained by frontal polymerization. J Polym Sci A 50:1515–1520

    Article  CAS  Google Scholar 

  12. Dennis JM, Long TR, Krishnamurthy A, Tran NT, Knorr DB et al (2020) Influence of hydroxyl group concentration on mechanical properties and impact resistance of ROMP copolymers. ACS Appl Polym Mater 2:2414-2425

    Article  CAS  Google Scholar 

  13. Wang J, Shi ZC, Wang X, Mai XM, Fan RH, Liu H et al (2018) Enhancing dielectric performance of poly(vinylidene fluoride) nanocomposites via controlled distribution of carbon nanotubes and barium titanate nanoparticles. Eng Sci 4:79–86

    Google Scholar 

  14. Sun L, Liang L, Shi ZC, Wang HL, Xie PT, Dastan D et al (2020) Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng Sci 12:95–105

    CAS  Google Scholar 

  15. Dhatarwal P, Sengwa RJ (2020) Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Adv Compos Hybrid Mater 3:344–353

    Article  CAS  Google Scholar 

  16. Ma L, Zhang Q, Cui C, Zhong Q, Zhang Y (2020) Introduction of a stable radical in polymer capacitor enables high energy storage and pulse discharge efficiency. Chem Mater 32:9355–9362

    Article  CAS  Google Scholar 

  17. Culver SP, Beier CW, Rafson JP, Brutchey RL (2014) Surface modification of BaTiO3 inclusions in polydicyclopentadiene nanocomposites for energy storage. J Appl Polym Sci 131:40290

    Article  CAS  Google Scholar 

  18. Kozinsky B, Marzari N (2006) Static dielectric properties of carbon nanotubes from first principles. Phys Rev Lett 96:166801

  19. Lan W, Dang ZM (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87:042903

  20. Ahmad K, Pan W, Shi SL (2006) Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Appl Phys Lett 89:1899

    Article  Google Scholar 

  21. Xie PT, Liu Y, Feng M, Niu M, Liu CZ, Wu NN et al (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    Article  CAS  Google Scholar 

  22. Dang ZM, Wang L, Yin Y, Zhang Q, Lei Q, Giant Q (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857

    Article  CAS  Google Scholar 

  23. Jiang MJ, Dang ZM, Xu HP (2007) Giant dielectric constant and resistance-pressure sensitivity in carbon nanotubes/rubber nanocomposites with low percolation threshold. Appl Phys Lett 90:042914

  24. Li Q, Xue Q, Hao L, Gao X, Zheng Q (2008) Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos Sci Technol 68:2290–2296

    Article  CAS  Google Scholar 

  25. Yuan JK, Yao SH, Dang ZM, Sylvestre A, Genestoux M, Bai J (2011) Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C 11:5515–5521

    Google Scholar 

  26. Dang ZM, Zhang YH, Tjong SC (2004) Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synth Met 146:79–84

    Article  CAS  Google Scholar 

  27. Yao SH, Dang ZM, Jiang MJ, Xu HP, Bai J (2007) Influence of aspect ratio of carbon nanotube on percolation threshold in ferroelectric polymer nanocomposite. Appl Phys Lett 91:212901

  28. Kohlmeyer RR, Javadi A, Pradhan B, Pilla S, Setyowati K, Chen J et al (2009) Electrical and dielectric properties of hydroxylated carbon nanotube-elastomer composites. J Phys Chem C 113:17626–17629

    Article  CAS  Google Scholar 

  29. Yuan JK, Li WL, Yao SH, Lin YQ, Sylvestre A, Bai J (2011) High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Appl Phys Lett 98:032901

  30. Zhao M, Fu Q, Hou Y, Luo L, Li W (2019) BaTiO3/MWNTs/polyvinylidene fluoride ternary dielectric composites with excellent dielectric property, high breakdown strength, and high-energy storage density. ACS Omega 4:1000–1006

    Article  CAS  Google Scholar 

  31. Zhang T, Yang J, Zhang N, Huang T, Wan Y (2017) Achieving large dielectric property improvement in poly(ethylene vinyl acetate)/thermoplastic polyurethane/multiwall carbon nanotube nanocomposites by tailoring phase morphology. Ind Eng Chem Res 56:3607–3617

    Article  CAS  Google Scholar 

  32. Arjmand M, Sadeghi S, Khajehpour M, Sundararaj U (2016) Carbon nanotube/graphene nanoribbon/polyvinylidene fluoride hybrid nanocomposites: rheological and dielectric properties. J Phys Chem C 121:169–181

    Article  CAS  Google Scholar 

  33. Cheng HKF, Pan Y, Sahoo NG, Chong K, Lin L, Chan SH, Zhao J (2012) Improvement in properties of multiwalled carbon nanotube/polypropylene nanocomposites through homogeneous dispersion with the aid of surfactants. J Appl Polym Sci 124:1117–1127

    Article  CAS  Google Scholar 

  34. Koysuren O, Karaman M, Ozyurt D (2013) Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly (methyl methacrylate)/carbon nanotube composites. J Appl Polym Sci 127:4557–4563

    Article  CAS  Google Scholar 

  35. Jeong W, Kessler MR (2008) Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadiene composites. Chem Mater 20:7060–7068

    Article  CAS  Google Scholar 

  36. Yang G, Lee SC, Lee JK (2016) Reinforcement of norbornene-based nanocomposites with norbornene functionalized multi-walled carbon nanotubes. Chem Eng J 288:9–18

    Article  CAS  Google Scholar 

  37. Kao CC, Young RJ (2004) A Raman spectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites. Compos Sci Technol 64:2291–2295

    Article  CAS  Google Scholar 

  38. Gao C, Jin YZ, Kong H, Whitby RLD, Acquah SFA, Chen GY et al (2005) Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109:11925–11932

    Article  CAS  Google Scholar 

  39. Cui LJ, Geng HZ, Wang WY, Chen LT, Gao J (2013) Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon 54:277–282

    Article  CAS  Google Scholar 

  40. Chang CM, Liu YL (2010) Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon 48:1289–1297

    Article  CAS  Google Scholar 

  41. Constable GS, Lesser AJ, Coughlin EB (2004) Morphological and mechanical evaluation of hybrid organic-inorganic thermoset copolymers of dicyclopentadiene and mono- or tris(norbornenyl)-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 37:1276–1282

    Article  CAS  Google Scholar 

  42. Gong L, Xu W, Liu K, Ou E, Zhao W (2015) ROMP of acetoxy-substituted dicyclopentadiene to a linear polymer with a high Tg. RSC Adv 5:26185–26188

    Article  CAS  Google Scholar 

  43. He Z, Sun J, Li Z, Wang Y, Ren H, Bao JB (2018) Synergistic reinforcing and toughening of polydicyclopentadiene nanocomposites with low loadings vinyl-functionalized multi-walled carbon nanotubes. Polymer 153:287–294

    Article  CAS  Google Scholar 

  44. Ivanoff DG, Sung J, Butikofer SM, Moore JS, Sottos NR (2020) Cross-linking agents for enhanced performance of thermosets prepared via frontal ring-opening metathesis polymerization. Macromolecules 53:8360–8366

    Article  CAS  Google Scholar 

  45. Jeong W, Kessler MR (2009) Effect of functionalized MWCNTs on the thermo-mechanical properties of poly(5-ethylidene-2-norbornene) composites produced by ring-opening metathesis polymerization. Carbon 47:2406–2412

    Article  CAS  Google Scholar 

  46. Wang Y, Li Z, Sun J, Bao JB, Ni L (2017) Dramatic toughness enhancement of polydicyclopentadiene composites by incorporating low amounts of vinyl-functionalized SiO2. Ind Eng Chem Res 56:4750–4757

    Article  CAS  Google Scholar 

  47. Zhang H, Zhao M, Huang ZX, Qu JP (2020) Synergistic effect based on enhanced local shear forces in PVDF/TiO2/CNT ternary composites. Ind Eng Chem Res 59:18887–18897

    Article  CAS  Google Scholar 

  48. Wang H, Meng F, Huang F, Jing C, Li Y, Wei W et al (2019) Interface modulating CNTs@ PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl Mater Interfaces 11:12142–12153

    Article  CAS  Google Scholar 

  49. Qiang Z, Liang G, Gu A, Yuan L (2014) The interaction between unique hyperbranched polyaniline and carbon nanotubes, and its influence on the dielectric behavior of hyperbranched polyaniline/carbon nanotube/epoxy resin composites. J Nanopart Res 16:1–18

    Article  CAS  Google Scholar 

  50. Jang H, Yoon H, Ko Y, Choi J, Lee SS, Jeon I et al (2016) Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties. Nanoscale 8:5667–5675

    Article  CAS  Google Scholar 

  51. Chen Y, Lin B, Zhang X, Wang J, Lai C, Sun Y (2014) Enhanced dielectric properties of amino-modified-CNT/polyimide composite films with a sandwich structure. J Mater Chem A 2:14118

    Article  CAS  Google Scholar 

  52. Pu Z, Huang X, Chen L, Yang J, Tang H, Liu X (2013) Effect of nitrile-functionalization and thermal cross-linking on the dielectric and mechanical properties of PEN/CNTs-CN composites. J Mater Sci-Mater Electron 24:2913–2922

    Article  CAS  Google Scholar 

  53. Kumar GS, Vishnupriya D, Chary KS, Patro TU (2016) Corrigendum: high dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties. Nanotechnology 27:385702

  54. Yuan JK, Yao SH, Dang ZM, Sylvestre A, Genestoux M, Bai J (2011) Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C 115:5515–5521

    Article  CAS  Google Scholar 

  55. Yang C, Lin Y, Nan CW (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47:1096–1101

    Article  CAS  Google Scholar 

  56. Zhu BK, Xie SH, Xu ZK, Xu YY (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66:548–554

    Article  CAS  Google Scholar 

  57. Liu H, Shen Y, Yu S, Nan CW, Lin Y, Yang X (2011) Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density 23:5104–5108

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 51903002), Natural Science Foundation of Anhui Education Department (Nos. KJ2019A0774, KJ2019JD18), Major Science and Technology Projects of Anhui Province (201903a05020027), Anhui Jianzhu University PhD Startup Fund (2019QDZ22, 2018QD59), University Collaborative Innovation Project of Anhui province (GXXT-2019–017), WuHu Key Technology Major R&D Projects(No. 2020yf14), and Research Fund for Postdoctoral Researchers in Anhui Province (2020B413).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wang or Chong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 332 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yang, L., Gao, S. et al. Enhanced dielectric properties of high glass transition temperature PDCPD/CNT composites by frontal ring-opening metathesis polymerization. Adv Compos Hybrid Mater 4, 639–646 (2021). https://doi.org/10.1007/s42114-021-00287-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00287-0

Keywords

Navigation