Skip to main content
Log in

Investigations on dielectric and mechanical properties of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/single-walled carbon nanotube composites

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Due to their unique properties and potential uses in many fields, composite materials have attracted much attention and been extensively investigated. We have investigated the mechanical and dielectric properties of single-walled carbon nanotubes (SWCNTs)–reinforced poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composite films. Composite films were prepared with SWCNTs concentrations ranging from 0.2 to 1.0% using a solution casting technique. Impedance spectroscopy was used to investigate the composite dielectric behavior, and tensile testing was performed to examine their mechanical properties. Field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy were used for morphological analyses, and an X-ray diffractometer was used to determine the crystalline phase. The results showed that adding SWCNTs improved mechanical properties, including ultimate tensile strength (UTS) and elastic modulus (E). It also increased the dielectric constant. However, the dielectric loss also increased slightly. These enhancements can be attributed to the unique characteristics of the SWCNTs, such as their high aspect ratio and surface area. This research demonstrates the potential of PVDF-HFP/SWCNTs composites in various applications such as electronic devices, sensors, and capacitors. This study offers valuable insights for developing and designing composite films with improved properties for various applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fiedziuszko SJ, Hunter IC, Itoh T et al (2002) Dielectric materials, devices, and circuits. IEEE Trans Microw Theory Tech 50:706–720. https://doi.org/10.1109/22.989956

    Article  CAS  Google Scholar 

  2. Zou K, Dan Y, Xu H et al (2019) Recent advances in lead-free dielectric materials for energy storage. Mater Res Bull 113:190–201. https://doi.org/10.1016/J.MATERRESBULL.2019.02.002

    Article  CAS  Google Scholar 

  3. Dielectric materials for energy storage and energy harvesting applications | Frontiers Research Topic. https://www.frontiersin.org/research-topics/37067/dielectric-materials-for-energy-storage-and-energy-harvesting-applications. Accessed 28 Apr 2023

  4. Gao J, Wang Y, Liu Y et al (2017) Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon. Sci Rep 7:1–10. https://doi.org/10.1038/srep40916

    Article  CAS  Google Scholar 

  5. Hao X (2013) A review on the dielectric materials for high energy-storage application. J Adv Dielectr 03:1330001. https://doi.org/10.1142/s2010135x13300016

    Article  Google Scholar 

  6. Tian S, Wu S, Xiong G (2020) Graphitic nanopetals and their applications in electrochemical energy storage and biosensing. J Nanopart Res 22:97. https://doi.org/10.1007/s11051-020-04819-5

    Article  CAS  Google Scholar 

  7. Wei L, Li J, Chen R et al (2022) MOF-derived Ni-Co sulfide nanotubes/GO nanocomposites as electrode materials for supercapacitor applications. J Nanopart Res 24:230. https://doi.org/10.1007/s11051-022-05606-0

    Article  CAS  Google Scholar 

  8. Yao Z, Song Z, Hao H et al (2017) Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 29. https://doi.org/10.1002/adma.201601727

  9. The dielectric constant. https://www.doitpoms.ac.uk/tlplib/dielectrics/dielectric_constant.php. Accessed 11 Mar 2023

  10. Table of dielectric constants of substances | Level meters and level switches by Yamaden. http://www.ydic.co.jp/english/technology/table_E.html. Accessed 28 Apr 2023

  11. Newnham RE (2004) Dielectric constant. In: Properties of materials. Oxford University Press

    Chapter  Google Scholar 

  12. Newnham RE (2004) Properties of materials. Oxford University Press

    Book  Google Scholar 

  13. Wang S, Yang C, Li X et al (2022) Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. J Mater Chem C Mater 10:6196–6221. https://doi.org/10.1039/D2TC00193D

    Article  CAS  Google Scholar 

  14. Wu X, Chen X, Zhang QM, Tan DQ (2022) Advanced dielectric polymers for energy storage. Energy Storage Mater 44:29–47. https://doi.org/10.1016/J.ENSM.2021.10.010

    Article  Google Scholar 

  15. Khan T, Aslam M, Basit M, Raza ZA (2023) Graphene-embedded electrospun polyacrylonitrile nanofibers with enhanced thermo-mechanical properties. J Nanopart Res 25:78. https://doi.org/10.1007/s11051-023-05728-z

    Article  CAS  Google Scholar 

  16. Yang S, Pan J, Wu S et al (2023) Enhanced photovoltaic performance of PM6/Y6-based organic solar cells by a wide-bandgap small molecule acceptor. J Nanopart Res 25:134. https://doi.org/10.1007/s11051-023-05787-2

    Article  CAS  Google Scholar 

  17. Li M, Shi J, Chen C et al (2017) Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide. J Nanopart Res 19:114. https://doi.org/10.1007/s11051-017-3820-z

    Article  CAS  Google Scholar 

  18. Wu C, Chen L, Deshmukh A et al (2021) Dielectric polymers tolerant to electric field and temperature extremes: integration of phenomenology, informatics, and experimental validation. ACS Appl Mater Interfaces 13:53416–53424. https://doi.org/10.1021/acsami.1c11885

    Article  CAS  Google Scholar 

  19. Hu Z, Liu X, Ren T et al (2022) Research progress of low dielectric constant polymer materials. J Polym Eng 42:677–687. https://doi.org/10.1515/polyeng-2021-0338

    Article  CAS  Google Scholar 

  20. Sun W, Mao J, Wang S et al (2021) Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Front Chem Sci Eng 15:18–34. https://doi.org/10.1007/s11705-020-1939-4

    Article  CAS  Google Scholar 

  21. Wang D, Han C, Mo F et al (2020) Energy density issues of flexible energy storage devices. Energy Storage Mater 28:264–292. https://doi.org/10.1016/J.ENSM.2020.03.006

    Article  Google Scholar 

  22. Mao L, Meng Q, Ahmad A et al (2017) Mechanical analyses and structural design requirements for flexible energy storage devices. Adv Energy Mater 7:1700535. https://doi.org/10.1002/AENM.201700535

    Article  Google Scholar 

  23. Li H, Tang Z, Liu Z, Zhi C (2019) Evaluating flexibility and wearability of flexible energy storage devices. Joule 3:613–619. https://doi.org/10.1016/J.JOULE.2019.01.013

    Article  Google Scholar 

  24. Song WJ, Lee S, Song G et al (2020) Recent progress in aqueous based flexible energy storage devices. Energy Storage Mater 30:260–286. https://doi.org/10.1016/J.ENSM.2020.05.006

    Article  Google Scholar 

  25. Lin T, Tam SK, Hu X, Ng KM (2021) A new route for fast synthesis of copper nanowires and application on flexible transparent conductive films. J Nanopart Res 23:121. https://doi.org/10.1007/s11051-021-05239-9

    Article  CAS  Google Scholar 

  26. Guo Z, Liu Z, Liu W et al (2021) Multifunctional flexible polyvinyl alcohol nanocomposite hydrogel for stress and strain sensor. J Nanopart Res 23:222. https://doi.org/10.1007/s11051-021-05333-y

    Article  CAS  Google Scholar 

  27. Gao H, Li J, Zhang F et al (2019) The research status and challenges of shape memory polymer-based flexible electronics. Mater Horiz 6:931–944. https://doi.org/10.1039/C8MH01070F

    Article  CAS  Google Scholar 

  28. Kang H, Jung S, Jeong S et al (2015) Polymer-metal hybrid transparent electrodes for flexible electronics. Nature. Communications 6:1–7. https://doi.org/10.1038/ncomms7503

    Article  CAS  Google Scholar 

  29. Yakimets I, MacKerron D, Giesen P et al (2010) Polymer substrates for flexible electronics: achievements and challenges. Adv Mat Res 93–94:5–8. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.93-94.5

    Article  Google Scholar 

  30. Ouyang J (2021) Application of intrinsically conducting polymers in flexible electronics. SmartMat 2:263–285. https://doi.org/10.1002/SMM2.1059

    Article  CAS  Google Scholar 

  31. Chen X, Han X, Shen QD (2017) PVDF-based ferroelectric polymers in modern flexible electronics. Adv Electron Mater 3:1600460. https://doi.org/10.1002/AELM.201600460

    Article  Google Scholar 

  32. El Miri N, Abdelouahdi K, Barakat A et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167. https://doi.org/10.1016/J.CARBPOL.2015.04.051

    Article  Google Scholar 

  33. Altarazi S, Allaf R, Alhindawi F (2019) Machine learning models for predicting and classifying the tensile strength of polymeric films fabricated via different production processes. Materials 12:1475. https://doi.org/10.3390/MA12091475

    Article  CAS  Google Scholar 

  34. Baji A, Mai YW, Wong SC et al (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718. https://doi.org/10.1016/J.COMPSCITECH.2010.01.010

    Article  CAS  Google Scholar 

  35. Peng W, Rhim S, Zare Y, Rhee KY (2019) Effect of “Z” factor for strength of interphase layers on the tensile strength of polymer nanocomposites. Polym Compos 40:1117–1122. https://doi.org/10.1002/PC.24813

    Article  CAS  Google Scholar 

  36. Bastarrachea L, Dhawan S, Sablani SS (2011) engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng Rev 3:79–93. https://doi.org/10.1007/s12393-011-9034-8

    Article  Google Scholar 

  37. Zare Y, Rhee KY (2017) Dependence of Z parameter for tensile strength of multi-layered interphase in polymer nanocomposites to material and interphase properties. Nanoscale Res Lett 12:42. https://doi.org/10.1186/s11671-017-1830-5

    Article  CAS  Google Scholar 

  38. Manuel Stephan A, Teeters D (2003) Characterization of PVdF-HFP polymer membranes prepared by phase inversion techniques I. Morphology and charge–discharge studies. Electrochim Acta 48:2143–2148. https://doi.org/10.1016/S0013-4686(03)00197-X

    Article  CAS  Google Scholar 

  39. Shi L, Wang R, Cao Y et al (2007) Fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes. J Memb Sci 305:215–225. https://doi.org/10.1016/J.MEMSCI.2007.08.012

    Article  CAS  Google Scholar 

  40. Li Z, Su G, Gao D et al (2004) Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochim Acta 49:4633–4639. https://doi.org/10.1016/J.ELECTACTA.2004.05.018

    Article  CAS  Google Scholar 

  41. Nayak JK, Shankar U, Samal K (2023) Fabrication and development of SPEEK/PVdF-HFP/SiO2 proton exchange membrane for microbial fuel cell application. Chem Eng J Adv 14:100459. https://doi.org/10.1016/J.CEJA.2023.100459

    Article  CAS  Google Scholar 

  42. Song L, Sun S, Zhang S, Wei J (2022) Hydrogen production and mechanism from water splitting by metal-free organic polymers PVDF/PVDF-HFP under drive by vibrational energy. Fuel 324:124572. https://doi.org/10.1016/J.FUEL.2022.124572

    Article  CAS  Google Scholar 

  43. Zhang P, Yang LC, Li LL et al (2011) Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolyte. Fuel Energy Abstracts 379:80–85. https://doi.org/10.1016/J.MEMSCI.2011.05.043

    Article  CAS  Google Scholar 

  44. Roy J, Chikkonda R, Kishor G et al (2022) Structural, microstructural, and ferroelectric studies of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) thin films in Ag/Cu/PVDF-HFP/Cu capacitor structures. J Appl Polym Sci 139:52187. https://doi.org/10.1002/APP.52187

    Article  CAS  Google Scholar 

  45. Keum K, Heo JS, Eom J et al (2021) Highly sensitive textile-based capacitive pressure sensors using PVDF-HFP/ionic liquid composite films. Sensors 21:442. https://doi.org/10.3390/S21020442

    Article  CAS  Google Scholar 

  46. Maurya DK, Balan B, Murugadoss V et al (2020) A fast Li-ion conducting Li7.1La3Sr0.05Zr1.95O12 embedded electrospun PVDF-HFP nanohybrid membrane electrolyte for all-solid-state Li-ion capacitors. Mater Today Commun 25:101497. https://doi.org/10.1016/J.MTCOMM.2020.101497

  47. Sarno M, Baldino L, Scudieri C et al (2020) A one-step SC-CO2 assisted technique to produce compact PVDF-HFP MoS2 supercapacitor device. J Phys Chem Solid 136:109132. https://doi.org/10.1016/J.JPCS.2019.109132

    Article  CAS  Google Scholar 

  48. Yu S, Liu G, Zheng J et al (2022) Excellent thermostable and mechanically reinforced lithium-ion capacitor based on inverse opal structural PVDF-HFP/MWCNT electrolyte. ACS Appl Energy Mater 5:3876–3885. https://doi.org/10.1021/acsaem.2c00397

    Article  CAS  Google Scholar 

  49. Zhang Q, Wang Q, Huang S et al (2021) Preparation and electrochemical study of PVDF-HFP/LATP/g-C3N4 composite polymer electrolyte membrane. Inorg Chem Commun 131:108793. https://doi.org/10.1016/J.INOCHE.2021.108793

    Article  CAS  Google Scholar 

  50. Sharma S, Mishra SS, Kumar R, Yadav RM (2022) Recent progress on polyvinylidene difluoride-based nanocomposites: applications in energy harvesting and sensing. New J Chem 46:18613–18646. https://doi.org/10.1039/D2NJ00002D

    Article  CAS  Google Scholar 

  51. Moharana S, Mahaling RN (2017) Silver (Ag)-Graphene oxide (GO) - Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanostructured composites with high dielectric constant and low dielectric loss. Chem Phys Lett 680:31–36. https://doi.org/10.1016/J.CPLETT.2017.05.018

    Article  CAS  Google Scholar 

  52. Salea A, Chaipo S, Permana AA et al (2020) The microstructure of negative electrocaloric polyvinylidene fluoride-hexafluoropropylene copolymer on graphene loading for eco-friendly cooling technology. J Clean Prod 251:119730. https://doi.org/10.1016/J.JCLEPRO.2019.119730

    Article  CAS  Google Scholar 

  53. Shanmugaraj P, Swaminathan A, Ravi RK et al (2019) Preparation and characterization of porous PVdF-HFP/graphene oxide composite membranes by solution casting technique. J Mater Sci Mater Electron 30(22):20079–20087. https://doi.org/10.1007/S10854-019-02380-Z

    Article  CAS  Google Scholar 

  54. Ponnamma D, Erturk A, Parangusan H et al (2018) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 1:55–65. https://doi.org/10.1007/S42247-018-0007-Z

    Article  CAS  Google Scholar 

  55. Pavithra S, Sakunthala A, Rajesh S et al (2023) Influence of graphene oxide on the membrane characteristics of PVDF-HFP as an electrolyte for lithium-based energy storage devices. Appl Nanosci 13:4177–4192. https://doi.org/10.1007/s13204-023-02839-w

    Article  CAS  Google Scholar 

  56. Bobrowska DM, Gdula K, Breczko J et al (2022) Poly(p-phenylene vinylene) incorporated into carbon nanostructures. J Nanopart Res 24:222. https://doi.org/10.1007/s11051-022-05589-y

    Article  CAS  Google Scholar 

  57. Oublal E, Ait Abdelkadir A, Sahal M (2022) High performance of a new solar cell based on carbon nanotubes with CBTS compound as BSF using SCAPS-1D software. J Nanopart Res 24:202. https://doi.org/10.1007/s11051-022-05580-7

    Article  CAS  Google Scholar 

  58. Bagyalakshmi S, Sivakami A, Pal K et al (2022) Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review. J Nanopart Res 24:201. https://doi.org/10.1007/s11051-022-05576-3

    Article  CAS  Google Scholar 

  59. Dai ZH, Han JR, Gao Y et al (2017) Increased dielectric permittivity of poly(vinylidene fluoride-co-chlorotrifluoroethylene) nanocomposites by coating BaTiO3 with functional groups owning high bond dipole moment. Colloids Surf A Physicochem Eng Asp 529:560–570. https://doi.org/10.1016/J.COLSURFA.2017.05.065

    Article  CAS  Google Scholar 

  60. Uguen N (2022) Dispersion state, interfacial phenomena and dielectric properties in high-permittivity polymer-based nanocomposites. . Materials Science [cond-mat.mtrl-sci]. Université de Lyon, English. ⟨NNT : 2022LYSE1032⟩. ⟨tel-04008532⟩ https://ird.hal.science/THESES_LYON1/tel-04008532v1

  61. Zhao X, Bi Y, Xie J et al (2021) Enhanced dielectric, energy storage and tensile properties of BaTiO3–NH2/low-density polyethylene nanocomposites with POE-GMA as interfacial modifier. Polym Test 95:107094. https://doi.org/10.1016/J.POLYMERTESTING.2021.107094

    Article  CAS  Google Scholar 

  62. Ponnamma D, Al-Maadeed MAA (2019) Influence of BaTiO3 /white graphene filler synergy on the energy harvesting performance of a piezoelectric polymer nanocomposite. Sustain Energy Fuels 3:774–785. https://doi.org/10.1039/C8SE00519B

    Article  CAS  Google Scholar 

  63. Mimura K, Kato K (2020) High refractive index and dielectric properties of BaTiO3 nanocube/polymer composite films. J Nanopart Res 22:241. https://doi.org/10.1007/s11051-020-04971-y

    Article  CAS  Google Scholar 

  64. Mimura K, Kato K (2013) Fabrication and piezoresponse properties of 100 BaTiO3 films containing highly ordered nanocube assemblies on various substrates. J Nanopart Res 15:1995. https://doi.org/10.1007/s11051-013-1995-5

    Article  CAS  Google Scholar 

  65. Kim KM, Park NG, Ryu KS, Chang SH (2006) Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. Electrochim Acta 51:5636–5644. https://doi.org/10.1016/J.ELECTACTA.2006.02.038

    Article  CAS  Google Scholar 

  66. Mitra R, Sheetal Priyadarshini B, Ramadoss A, Manju U (2022) Stretchable polymer-modulated PVDF-HFP/TiO2 nanoparticles-based piezoelectric nanogenerators for energy harvesting and sensing applications. Mater Sci Eng B 286:116029. https://doi.org/10.1016/J.MSEB.2022.116029

  67. Deepak Rosario J, Ranjithkumar R, Vidhya B et al (2023) Influence of GO concentration in development of PVDF-HFP/TiO2/graphene oxide nanocomposite films for electroadhesive applications. J Electron Mater 52(3):2062–2070. https://doi.org/10.1007/S11664-022-10138-3

    Article  CAS  Google Scholar 

  68. Rosario JD, Ranjithkumar R, Vidhya B et al (2022) Influence of particle size reduction in ball milled rutile TiO2 on the properties of PVDF-HFP/ TiO2 nanocomposite films as dielectric layers for electro adhesive load bearing applications. J Mater Sci Mater Electron 33(34):25976–25990. https://doi.org/10.1007/S10854-022-09288-1

    Article  CAS  Google Scholar 

  69. Razzaq H, Nawaz H, Siddiqa A et al (2016) A brief review on nanocomposites based on PVDF with nanostructured TiO2 as filler. Madridge Journal of. Nanotechnol Nanosci 1:23–29. https://doi.org/10.18689/MJNN-1000107

    Article  Google Scholar 

  70. Lancel G, Stevens P, Toussaint G et al (2017) Hybrid Li ion conducting membrane as protection for the Li anode in an aqueous Li–air battery: coupling sol–gel chemistry and electrospinning. Langmuir 33:9288–9297. https://doi.org/10.1021/acs.langmuir.7b00675

    Article  CAS  Google Scholar 

  71. Kishor KK, Kalathi JT (2020) Investigation on the dielectric performance of PVDF-HFP/LZO composites. J Alloys Compd 843:155889. https://doi.org/10.1016/J.JALLCOM.2020.155889

    Article  Google Scholar 

  72. Li J, Yin J, Yang C et al (2019) Enhanced dielectric performance and energy storage of PVDF-HFP-based composites induced by surface charged Al2O3. J Polym Sci B Polym Phys 57:574–583. https://doi.org/10.1002/POLB.24814

    Article  CAS  Google Scholar 

  73. Liu J, Khanam Z, Ahmed S et al (2021) A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes. J Power Sources 488:229461. https://doi.org/10.1016/J.JPOWSOUR.2021.229461

    Article  CAS  Google Scholar 

  74. Radwan AB, El-Hout SI, Ibrahim MAM et al (2022) Superior corrosion and UV-resistant highly porous poly(vinylidene fluoride-co-hexafluoropropylene)/alumina superhydrophobic coating. ACS Appl Polym Mater 4:1358–1367. https://doi.org/10.1021/ACSAPM.1C01710

    Article  CAS  Google Scholar 

  75. Wang L, Yan J, Zhang R et al (2021) Core–shell PMIA@PVdF-HFP/Al2O3 nanofiber mats in situ coaxial electrospun on LiFePO4 electrode as matrices for gel electrolytes. ACS Appl Mater Interfaces 13:9875–9884. https://doi.org/10.1021/acsami.0c20854

    Article  CAS  Google Scholar 

  76. Sadhu SPP, Siddabattuni S, Muthukumar V. S, Varma KBR (2018) Enhanced dielectric properties and energy storage density of surface engineered BCZT/PVDF-HFP nanodielectrics. J Mater Sci Mater Electron 29:6174–6182. https://doi.org/10.1007/s10854-018-8592-4

  77. Yadav MS (2020) Fabrication and characterization of supercapacitor electrodes using chemically synthesized CuO nanostructure and activated charcoal (AC) based nanocomposite. J Nanopart Res 22:303. https://doi.org/10.1007/s11051-020-05027-x

    Article  CAS  Google Scholar 

  78. Ma Y, Tong W, Wang W et al (2018) Montmorillonite/PVDF-HFP-based energy conversion and storage films with enhanced piezoelectric and dielectric properties. Compos Sci Technol 168:397–403. https://doi.org/10.1016/J.COMPSCITECH.2018.10.009

    Article  CAS  Google Scholar 

  79. Wang H, Xie H, Wang S et al (2018) Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets. Compos Part A Appl Sci Manuf 108:62–68. https://doi.org/10.1016/J.COMPOSITESA.2018.02.020

    Article  CAS  Google Scholar 

  80. Roy S, Thakur P, Hoque NA et al (2016) Enhanced electroactive β-phase nucleation and dielectric properties of PVdF-HFP thin films influenced by montmorillonite and Ni(OH)2 nanoparticle modified montmorillonite. RSC Adv 6:21881–21894. https://doi.org/10.1039/C6RA00864J

    Article  CAS  Google Scholar 

  81. Chen L, Huang J, Yan L et al (2021) Mechanical, thermal, and dielectric properties of polyvinylidene fluoride nanocomposites fabricated by introducing functional MWCNTs/barium titanate compounding dielectric nanofillers. Polym Compos 42:1383–1395. https://doi.org/10.1002/PC.25908

    Article  CAS  Google Scholar 

  82. Shahi A, Dwivedi C, Manjare SD, Kulshrestha V (2021) Sulphonated (PVDF-co-HFP)-graphene oxide composite polymer electrolyte membrane for HI decomposition by electrolysis in thermochemical iodine-sulphur cycle for hydrogen production. Int J Hydrogen Energy 46:8852–8863. https://doi.org/10.1016/J.IJHYDENE.2021.01.027

    Article  CAS  Google Scholar 

  83. Zheng W, Li Z, Lu G et al (2023) 3D flexible N-doped carbonaceous materials/PVDF-HFP composite frameworks for quasi-solid-state 4.5 V Li-ion capacitors. Chem Eng J 451:138581. https://doi.org/10.1016/J.CEJ.2022.138581

    Article  CAS  Google Scholar 

  84. Hou Y, Choy KL (2022) Durable and robust PVDF-HFP/SiO2/CNTs nanocomposites for anti-icing application: water repellency, icing delay, and ice adhesion. Prog Org Coat 163:106637. https://doi.org/10.1016/J.PORGCOAT.2021.106637

  85. Chang S, Hou M, Xu B et al (2021) High-performance quasi-solid-state Na-air battery via gel cathode by confining moisture. Adv Funct Mater 31:2011151. https://doi.org/10.1002/ADFM.202011151

    Article  CAS  Google Scholar 

  86. Badatya S, Kumar A, Sharma C et al (2021) Transparent flexible graphene quantum dot-(PVDF-HFP) piezoelectric nanogenerator. Mater Lett 290:129493. https://doi.org/10.1016/J.MATLET.2021.129493

    Article  CAS  Google Scholar 

  87. Yadav RM, Kumar R, Awasthi K, Srivastava ON (2011) Preparation of carbon-nitrogen nanotubes (CNNTs)-polyethylene oxide (PEO) composite films and their electrical conductivity measurement. Int J Nanosci 10:1091–1094. https://doi.org/10.1142/S0219581X11009477

    Article  CAS  Google Scholar 

  88. Nunes-Pereira J, Sharma P, Fernandes LC et al (2018) Poly(vinylidene fluoride) composites with carbon nanotubes decorated with metal nanoparticles. Compos B Eng 142:1–8. https://doi.org/10.1016/J.COMPOSITESB.2017.12.047

    Article  CAS  Google Scholar 

  89. Wang J, Zhan J, Mu X et al (2018) Manganese phytate dotted polyaniline shell enwrapped carbon nanotube: towards the reinforcements in fire safety and mechanical property of polymer. J Colloid Interface Sci 529:345–356. https://doi.org/10.1016/J.JCIS.2018.06.038

    Article  CAS  Google Scholar 

  90. Efzan MNE, Syazwani NS (2018) A review on effect of nanoreinforcement on mechanical properties of polymer nanocomposites. Solid State Phenomena 280:284–293. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/SSP.280.284

    Article  Google Scholar 

  91. Kaleemullah M, Khan SU, Kim JK (2012) Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Compos Sci Technol 72:1968–1976. https://doi.org/10.1016/J.COMPSCITECH.2012.08.020

    Article  CAS  Google Scholar 

  92. Namitha R, Radhika D, Kannan K, Krishnamurthy G (2021) Manufacturing and processing of carbon nanotubes for H2 storage. Phys Chem Solid State 22:209–216. https://doi.org/10.15330/pcss.22.2.209-216

    Article  CAS  Google Scholar 

  93. Yadav RM, Dobal PS (2012) Structural and electrical characterization of bamboo-shaped C–N nanotubes–poly ethylene oxide (PEO) composite films. J Nanopart Res 14:1155. https://doi.org/10.1007/s11051-012-1155-3

    Article  CAS  Google Scholar 

  94. Vijayalakshmi V, Sadanandan B, Anjanapura RV (2023) In vitro comparative cytotoxic assessment of pristine and carboxylic functionalized multiwalled carbon nanotubes on LN18 cells. J Biochem Mol Toxicol 37. https://doi.org/10.1002/jbt.23283

  95. Atiq Ur Rehman M, Chen Q, Braem A et al (2021) Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. Int Mater Rev 66:533–562. https://doi.org/10.1080/09506608.2020.1831299

    Article  CAS  Google Scholar 

  96. Wang Y, Yue G, Li D et al (2020) A robust carbon nanotube and PVDF-HFP nanofiber composite superwettability membrane for high-efficiency emulsion separation. Macromol Rapid Commun 41:2000089. https://doi.org/10.1002/MARC.202000089

    Article  CAS  Google Scholar 

  97. Ning HM, Hu N, Kamata T et al (2013) Improved piezoelectric properties of poly(vinylidene fluoride) nanocomposites containing multi-walled carbon nanotubes. Smart Mater Struct 22:065011. https://doi.org/10.1088/0964-1726/22/6/065011

    Article  CAS  Google Scholar 

  98. Batth A, Mueller A, Rakesh L, Mellinger A (2012) Electrical properties of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) blended with carbon nanotubes. Annual Report - Conf Electr Insulation Dielectric Phenom, CEIDP 28–31. https://doi.org/10.1109/CEIDP.2012.6378714

  99. Francis L, Hilal N (2022) Electrosprayed CNTs on electrospun PVDF-Co-HFP membrane for robust membrane distillation. Nanomaterials 12:4331. https://doi.org/10.3390/NANO12234331

    Article  CAS  Google Scholar 

  100. Bronikowski MJ, Willis PA, Colbert DT et al (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A 19:1800–1805. https://doi.org/10.1116/1.1380721

    Article  CAS  Google Scholar 

  101. Deshmukh K, Sankaran S, Ahamed B et al (2017) Dielectric spectroscopy. Spectroscopic methods for nanomaterials characterization. Elsevier, In, pp 237–299

    Google Scholar 

  102. Modulus of Elasticity | Instron. https://www.instron.com/en-in/resources/glossary/m/modulus-of-elasticity. Accessed 30 Apr 2023

  103. Numeracy, Maths and Statistics - Academic Skills Kit. https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/core-mathematics/geometry/equation-of-a-straight-line.html. Accessed 30 Apr 2023

  104. Kim GH, Hong SM, Seo Y (2009) Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys Chem Chem Phys 11:10506. https://doi.org/10.1039/b912801h

    Article  CAS  Google Scholar 

  105. Begum S, Ullah H, Ahmed I et al (2021) Investigation of morphology, crystallinity, thermal stability, piezoelectricity and conductivity of PVDF nanocomposites reinforced with epoxy functionalized MWCNTs. Compos Sci Technol 211:108841. https://doi.org/10.1016/j.compscitech.2021.108841

    Article  CAS  Google Scholar 

  106. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370. https://doi.org/10.1016/J.ELECTACTA.2014.07.120

    Article  CAS  Google Scholar 

  107. Samet M, Kallel A, Serghei A (2022) Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: scaling laws and applications. J Compos Mater 56:3197–3217. https://doi.org/10.1177/00219983221090629

    Article  CAS  Google Scholar 

  108. Samet M, Levchenko V, Boiteux G et al (2015) Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J Chem Phys 142:194703. https://doi.org/10.1063/1.4919877

    Article  CAS  Google Scholar 

  109. Samet M, Boiteux G, Seytre G et al (2014) Interfacial polarization in composite materials with spherical fillers: characteristic frequencies and scaling laws. Colloid Polym Sci 292:1977–1988. https://doi.org/10.1007/s00396-014-3300-2

    Article  CAS  Google Scholar 

  110. Lin B, Li ZT, Yang Y et al (2019) Enhanced dielectric permittivity in surface-modified graphene/PVDF composites prepared by an electrospinning-hot pressing method. Compos Sci Technol 172:58–65. https://doi.org/10.1016/J.COMPSCITECH.2019.01.003

    Article  CAS  Google Scholar 

  111. Xia X, Wang Y, Zhong Z, Weng GJ (2017) A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon N Y 111:221–230. https://doi.org/10.1016/J.CARBON.2016.09.078

    Article  CAS  Google Scholar 

  112. Taha EO, Alyousef HA, Dorgham AM et al (2023) Electron beam irradiation and carbon nanotubes influence on PVDF-PZT composites for energy harvesting and storage applications: changes in dynamic-mechanical and dielectric properties. Inorg Chem Commun 151:110624. https://doi.org/10.1016/j.inoche.2023.110624

    Article  CAS  Google Scholar 

  113. Jin F, Feng M, Huang X et al (2015) Effect of SiO2 grafted MWCNTs on the mechanical and dielectric properties of PEN composite films. Appl Surf Sci 357:704–711. https://doi.org/10.1016/j.apsusc.2015.09.086

    Article  CAS  Google Scholar 

  114. Zhang Z, Gu Y, Wang S et al (2016) Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film. Carbon N Y 107:405–414. https://doi.org/10.1016/j.carbon.2016.05.068

    Article  CAS  Google Scholar 

  115. Singer R, Ollick AM, Elhadary M (2021) Effect of cross-head speed and temperature on the mechanical properties of polypropylene and glass fiber reinforced polypropylene pipes. Alex Eng J 60:4947–4960. https://doi.org/10.1016/j.aej.2021.03.073

    Article  Google Scholar 

  116. Reis JML, Lima RP, Vidal SD (2018) Effect of rate and temperature on the mechanical properties of epoxy BADGE reinforced with carbon nanotubes. Compos Struct 202:89–94. https://doi.org/10.1016/J.COMPSTRUCT.2017.11.081

    Article  Google Scholar 

  117. Colak ÖU, Bahlouli N, Uzunsoy D, Francart C (2020) High strain rate behavior of graphene-epoxy nanocomposites. Polym Test 81:106219. https://doi.org/10.1016/J.POLYMERTESTING.2019.106219

    Article  CAS  Google Scholar 

  118. Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4:1–8. https://doi.org/10.1038/srep06479

    Article  CAS  Google Scholar 

  119. Stan F, Sandu LI, Fetecau C (2014) Effect of processing parameters and strain rate on mechanical properties of carbon nanotube–filled polypropylene nanocomposites. Compos B Eng 59:109–122. https://doi.org/10.1016/J.COMPOSITESB.2013.11.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the School of Physics (SOP) and the University of Hyderabad Centre for Nanotechnology (CFN) for providing the essential experimental infrastructure.

Funding

This research investigation is supported by DST-PURSE, granted to the University of Hyderabad by the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Kumar or Ram Manohar Yadav.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Hasan, M., Rajulapati, K.V. et al. Investigations on dielectric and mechanical properties of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/single-walled carbon nanotube composites. J Nanopart Res 25, 246 (2023). https://doi.org/10.1007/s11051-023-05886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05886-0

Keywords

Navigation