Skip to main content
Log in

Interfacial reactions and mechanical properties of Sn–3.0Ag–0.5Cu solder with pure Pd or Pd(P) layers containing thin-Au/Pd/Ni(P) surface-finished PCBs during aging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The microelectronics packaging industry, although rapidly growing, faces several challenges including 3-D integration, issues with multifunctional capability, and fluctuating input/output (I/O) density, among others. Better-performing microelectronics assemblies for mitigating these challenges require alloys with superior solderability and minimal metallization layer thickness. To this end, in this study, we investigated two kinds of electroless-nickel electroless-palladium immersion gold (ENEPIG) with 0.3 μm Ni, 0.1 μm pure Pd or Pd-phosphorous (Pd(P)), and 0.1 μm Au layers plated on a printed circuit board (PCB) substrate. To analyze the effects of the pure Pd and Pd(P) layers in the thin ENEPIG, we evaluated the interfacial reactions and mechanical properties of the SAC305 solder with a pure Pd or Pd(P) layer in the thin ENEPIG joints after aging at 150 °C. Needle-type and chunky-type (Cu,Ni)6Sn5 IMCs were formed at the interfaces of the pure Pd and Pd(P) joints, respectively. The (Cu,Ni)6Sn5 IMC of the pure Pd joint was thinner than that of the Pd(P) joint after reflowing and aging for 100 h. However, the total IMC of the Pd(P) joint was thinner than that of the pure Pd joint from 250 to 1000 h. In a low-speed shear test, the shear strength of the Pd(P) joint was higher than that of the pure Pd joint for the entire aging time. Most fractures occurred at the Sn-rich surface with a ductile mode, regardless of the different substrates and aging times. After high-speed shear testing, the shear strength of the pure Pd joint was higher than that of the Pd(P) joint until aging for 100 h. After aging for 250 h, the shear strength of the Pd(P) joint was higher than that of the pure Pd joint. The results for brittle fracture rate were similar to those for high-speed shear strength. Hence, Pd(P) joints are expected to demonstrate higher reliabilities than pure Pd joints after long aging treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y.C. Chan, D. Yang, Pro. Mater. Sci. 55, 428 (2010). https://doi.org/10.1016/j.pmatsci.2010.01.001

    Article  CAS  Google Scholar 

  2. W.H. Chen, C.F. Yu, H.C. Cheng, Y.M. Tsai, S.T. Lu, Microelectron. Eng. 53, 30 (2013). https://doi.org/10.1016/j.microrel.2012.06.146

    Article  CAS  Google Scholar 

  3. T.K. Lee, H. Ma, K.C. Liu, J. Xue, J. Electron. Mater. 39, 2564 (2010). https://doi.org/10.1007/s11664-010-1352-8

    Article  CAS  Google Scholar 

  4. C.T. Peng, C.M. Liu, J.C. Lin, H.C. Cheng, I.E.E.E. Trans, Electron. Packag. Manuf. 27, 684 (2004). https://doi.org/10.1109/TCAPT.2004.838867

    Article  Google Scholar 

  5. J. Zhang, Z. Hai, S. Thirugnanansambandam, J.L. Evans, M.J. Bozack, Y. Zhang, J.C. Suhling, I.E.E.E. Trans, Electron. Packag. Manuf. 3, 1348 (2013). https://doi.org/10.1109/TCPMT.2013.2251932

    Article  CAS  Google Scholar 

  6. A.K. Gain, L. Zhang, J. Alloys. Compd. 617, 779 (2014). https://doi.org/10.1016/j.jallcom.2014.08.076

    Article  CAS  Google Scholar 

  7. W.R. Myung, Y. Kim, S.B. Jung, J. Alloys. Compd. 615, s411 (2014). https://doi.org/10.1016/j.jallcom.2014.01.078

    Article  CAS  Google Scholar 

  8. J. Glazer, J. Electron. Mater. 23, 693 (1994). https://doi.org/10.1007/BF02651361

    Article  CAS  Google Scholar 

  9. K. Chu, Y. Sohn, C. Moon, Scr. Mater. 109, 113 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.032

    Article  CAS  Google Scholar 

  10. L. Yang, W. Zhou, Y. Ma, X. Li, Y. Liang, W. Cui, P. Wu, Mater. Sci. Eng. A 667, 368 (2016). https://doi.org/10.1016/j.msea.2016.05.015

    Article  CAS  Google Scholar 

  11. H.F. Zou, Q.K. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 532, 167 (2012). https://doi.org/10.1016/j.msea.2011.10.078

    Article  CAS  Google Scholar 

  12. S. Ahat, M. Sheng, L. Luo, J. Electron. Mater. 30, 1317 (2001). https://doi.org/10.1007/s11664-001-0118-8

    Article  CAS  Google Scholar 

  13. X. Deng, G. Piotrowski, J.J. Williams, N. Chawla, J. Electron. Mater. 32, 1403 (2003). https://doi.org/10.1007/s11664-003-0108-0

    Article  CAS  Google Scholar 

  14. K. Zeng, K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002). https://doi.org/10.1016/S0927-796X(02)00007-4

    Article  Google Scholar 

  15. Y.D. Jeon, A. Ostmann, H. Reichl, and K.W. Paik, in 2003 Electronic Components and Technology Conference Proceedings (2003), pp. 1203–1208.

  16. J.W. Yoon, Y.H. Lee, D.G. Kim, H.B. Kang, S.J. Suh, C.W. Yang, C.B. Lee, J.M. Jung, C.S. Yoo, S.B. Jung, J. Alloys. Compd. 381, 151 (2004). https://doi.org/10.1016/j.jallcom.2004.03.076

    Article  CAS  Google Scholar 

  17. H.W. Miao, J.G. Duh, Mater. Chem. Phys. 71, 255 (2001). https://doi.org/10.1016/S0254-0584(01)00298-X

    Article  CAS  Google Scholar 

  18. P.J. Shang, Z.Q. Liu, D.X. Li, J.K. Shang, J. Electron. Mater. 38, 2579 (2009). https://doi.org/10.1007/s11664-009-0894-0

    Article  CAS  Google Scholar 

  19. S.Y. Lee, H.M. Lee, J.H. Park, S.M. Shin, W.J. Kim, T. J. Choi, and K.W. Paik, in 2008 Electronic Components and Technology Conference Proceedings (2008), pp. 649–654. https://doi.org/10.1109/ECTC.2018.00103.

  20. Y. Zhang, Z. Cai, J. C. Suhling, P. Lall, and M. J. Bozack, in 2008 Electronic Components and Technology Conference proceedings (2008), pp. 99–112. https://doi.org/10.1109/ECT.2008.4549956.

  21. A.A. El-Daly, Y. Swilem, M.H. Makled, M.G. El-shaarawy, A.M. Abdraboh, J. Alloys. Compd. 484, 134 (2009). https://doi.org/10.1016/j.jallcom.2009.04.108

    Article  CAS  Google Scholar 

  22. J.W. Yoon, B.I. Noh, Y.H. Lee, H.S. Lee, S.B. Jung, Microelectron. Reliab. 48, 1864 (2008). https://doi.org/10.1016/j.microrel.2008.07.065

    Article  CAS  Google Scholar 

  23. D. Herkommer, J. Punch, M. Reid, Microelectron. Reliab. 50, 116 (2010). https://doi.org/10.1016/j.microrel.2009.08.008

    Article  CAS  Google Scholar 

  24. D.A. Shnawah, M.F.M. Sabri, A. Badruddin, Microelectron. Reliab. 52, 90 (2012). https://doi.org/10.1016/j.microrel.2011.07.093

    Article  CAS  Google Scholar 

  25. A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys. Compd. 509, 3319 (2011). https://doi.org/10.1016/j.jallcom.2010.12.048

    Article  CAS  Google Scholar 

  26. G. Ju, X. Wei, J. Liu, Solder. Surf. Mt. Technol. 20, 4 (2008). https://doi.org/10.1108/09540910810885660

    Article  CAS  Google Scholar 

  27. A.K. Gain, Y.C. Chan, Intermetallics 29, 48 (2012). https://doi.org/10.1016/j.intermet.2012.04.019

    Article  CAS  Google Scholar 

  28. P. Liu, P. Yao, J. Liu, J. Alloys. Compd. 470, 188 (2009). https://doi.org/10.1016/j.jallcom.2008.02.102

    Article  CAS  Google Scholar 

  29. R. Zhang, F. Guo, J. Liu, H. Shen, F. Tai, J. Electron. Mater. 38, 241 (2009). https://doi.org/10.1007/s11664-008-0582-5

    Article  CAS  Google Scholar 

  30. S.J. Wang, C.Y. Liu, Scr. Mater. 49, 813 (2003). https://doi.org/10.1016/S1359-6462(03)00486-X

    Article  CAS  Google Scholar 

  31. M.S. Kim, H. Nishikawa, Microelectron. Reliab. 76–77, 420 (2017). https://doi.org/10.1016/j.microrel.2017.06.083

    Article  CAS  Google Scholar 

  32. K. Zeng, R. Stierman, D. Abbot, and M. Murtuza, in 10th Intersociety Conference on Phenomena in Electronic Systems conference Proceedings, (2006) pp. 1111–1119. https://doi.org/10.1109/ITHERM.2006.1645469.

  33. C.F. Tseng, T.K. Lee, G. Ramakrishna, K.C. Liu, J.G. Duh, Mater. Lett. 65, 3216 (2011). https://doi.org/10.1016/j.matlet.2011.07.015

    Article  CAS  Google Scholar 

  34. J.W. Yoon, B.I. Noh, J.H. Yoon, H.B. Kang, S.B. Jung, J. Alloys. Compd. 509, L153 (2011). https://doi.org/10.1016/j.jallcom.2011.01.015

    Article  CAS  Google Scholar 

  35. J.W. Yoon, B.I. Noh, S.B. Jung, J. Electron. Mater. 40, 1950 (2011). https://doi.org/10.1007/s11664-011-1686-x

    Article  CAS  Google Scholar 

  36. Chaillot, N. Venet, P.E. Tegehall, J. Hokka, and J.L. Lortal, in 2013 European Microelectronics Packaging Conference (EMPC) proceedings, (2013) pp. 1–6.

  37. K.P.L. Pun, M.N. Islam, J. Rotanson, C.W. Cheung, A.H.S. Chan, J. Electron. Mater. 47, 5191 (2018). https://doi.org/10.1007/s11664-018-6385-4

    Article  CAS  Google Scholar 

  38. J. Palmer, D. Chu, and L. Fang, in Electronic Components and Technology Conference (ECTC) proceedings, (2012), pp. 1159–1162. https://doi.org/10.1109/ECTC.2012.6248982.

  39. L.B. Belykh, N.I. Skripov, T.P. Sterenchuk, V.V. Akimov, V.L. Tauson, F.K. Schmidt, Russ. J. Gen. Chem. 86, 1454 (2016). https://doi.org/10.1134/S1070363216090073

    Article  CAS  Google Scholar 

  40. C.E. Ho, L.H. Hsu, C.H. Yang, T.C. Yeh, P.T. Lee, Thin Solid Films 584, 257 (2015). https://doi.org/10.1016/j.tsf.2014.12.026

    Article  CAS  Google Scholar 

  41. C.Y. Ho, J.G. Duh, C.W. Lin, C.J. Lin, Y.H. Wu, H.C. Hong, T.H. Wang, J. Mater. Sci. 48, 2724 (2013). https://doi.org/10.1007/s10853-012-7070-2

    Article  CAS  Google Scholar 

  42. C.E. Ho, C.W. Fan, W.Z. Hsieh, Surf. Coat. Tech. 259, 244 (2014). https://doi.org/10.1016/j.surfcoat.2014.04.027

    Article  CAS  Google Scholar 

  43. S.S. Ha, J.K. Jang, S.O. Ha, J.W. Kim, J.W. Yoon, B.W. Kim, S.K. Park, S.B. Jung, J. Electron. Mater. 38, 2489 (2009). https://doi.org/10.1007/s11664-009-0916-y

    Article  CAS  Google Scholar 

  44. J.W. Yoon, B.I. Noh, S.B. Jung, I.E.E.E. Trans, Comp. Packag. Technol. 33, 222 (2010). https://doi.org/10.1109/TCAPT.2009.2028134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research project grant from the Ministry of Trade, Industry and Energy, Republic of Korea [Grant Number 20003904].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Boo Jung or Jeong-Won Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Back, JH., Jung, SB. et al. Interfacial reactions and mechanical properties of Sn–3.0Ag–0.5Cu solder with pure Pd or Pd(P) layers containing thin-Au/Pd/Ni(P) surface-finished PCBs during aging. J Mater Sci: Mater Electron 31, 4027–4039 (2020). https://doi.org/10.1007/s10854-020-02950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02950-6

Navigation