Skip to main content
Log in

Influence of initial morphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cu joints

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Intermetallic-layer formation and growth in Pb-free solder joints, during solder reflow or subsequent aging, has a significant effect on the thermal and mechanical behavior of solder joints. In this study, the influence of initial intermetallic morphology on growth rate, and kinetics were examined in a Sn-3.5Ag solder reflowed on Cu. The initial morphology of the intermetallic was tailered by cooling in water, air, or furnace conditions. Solder aging was conducted at 100°C, 140°C, and 175°C and aged for 0–1,000 h. Cooling rate, aging temperature, and aging time played an important role on microstructure evolution and growth kinetics of Cu6Sn5 (η) and Cu3Sn (ɛ) intermetallic layers. Prior to aging, faster cooling rates resulted in a relatively planar Cu6Sn5 layer, while a nodular Cu6Sn5 morphology was present for slower cooling. Intermetallic-growth rate measurements after aging at various times, indicated a mixed growth mechanism of grain-boundary and bulk diffusion. These mechanisms are discussed in terms of the initial intermetallic thickness and morphology controlled by cooling rate, diffusion kinetics, and the competition between Cu6Sn5 and Cu3Sn growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Glazer, J. Electron. Mater. 23, 693 (1994).

    CAS  Google Scholar 

  2. E.P. Wood and K.L. Nimmo, J. Electron. Mater. 23, 709 (1994).

    CAS  Google Scholar 

  3. M. McCormack and S. Jin, J. Electron. Mater. 23, 715 (1994).

    CAS  Google Scholar 

  4. I. Artaki, A.M. Jackson, and P.T. Vianco, J. Electron. Mater. 23, 757 (1994).

    CAS  Google Scholar 

  5. M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000).

    Article  Google Scholar 

  6. P. Protsenko, A. Terlain, V. Traskine, and N. Eustathopoulos, Scripta Mater. 45, 1439 (2001).

    Article  CAS  Google Scholar 

  7. D.R. Frear, JOM 48, 49 (1996).

    CAS  Google Scholar 

  8. C.K. Alex and Y.C. Chan, IEEE Trans. CPMT-B 19, 661 (1996).

    Google Scholar 

  9. P.L. Tu, Y.C. Chan, and J.K.L. Lai, IEEE Trans. CPMT-B 20, 87 (1997).

    CAS  Google Scholar 

  10. Z. Mei, A.J. Sunwoo, and J.W. Morris Jr., Metall. Trans. A 23A, 857 (1992).

    CAS  Google Scholar 

  11. K.H. Prakash and T. Sritharan, Acta Mater. 49, 2481 (2001).

    Article  CAS  Google Scholar 

  12. W.K. Choi and H.M. Lee, J. Electron. Mater. 29, 1207 (2000).

    Article  CAS  Google Scholar 

  13. F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 29, 1241 (2000).

    Article  CAS  Google Scholar 

  14. D. Ma, W.D. Wang, and S.K. Lahiri, J. Appl. Phys. 91, 3312 (2002).

    Article  CAS  Google Scholar 

  15. C.R. Kao, Mater. Sci. Eng. A238, 196 (1997).

    CAS  Google Scholar 

  16. A. Hayashi, C.R. Kao, and Y.A. Chang, Scripta Mater. 37, 393 (1997).

    Article  CAS  Google Scholar 

  17. S. Chada, R.A. Fournelle, W. Laub, and D. Shangguan, J. Electron. Mater. 29, 1214 (2000).

    Article  CAS  Google Scholar 

  18. P.T. Vianco, K.L. Erickson, and P.L. Hopkins, J. Electron. Mater. 23, 721 (1994).

    CAS  Google Scholar 

  19. K.L. Erickson, P.L. Hopkins, and P.T. Vianco, J. Electron. Mater. 23, 729 (1994).

    CAS  Google Scholar 

  20. A.J. Sunwoo, J.W. Morris, Jr., and G.K. Lucey Jr., Metall. Trans. A 23A, 1323 (1992).

    CAS  Google Scholar 

  21. M. Onishi and H. Fujibuchi, Trans. JIM 16, 539 (1975).

    CAS  Google Scholar 

  22. T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).

    CAS  Google Scholar 

  23. M. Schaffer, W. Laub, J.M. Sabee, and R.A. Fournelle, J. Electron. Mater. 25, 992 (1996).

    Google Scholar 

  24. M. Schaffer, R.A. Fournelle, and J. Liang, J. Electron. Mater. 27, 1167 (1998).

    Article  Google Scholar 

  25. C.E. Birchenall, Physical Metallurgy (New York: McGraw-Hill Book Company, Inc., 1959), pp. 216–217.

    Google Scholar 

  26. K.N. Tu, Acta Metall. 21, 347 (1973).

    Article  CAS  Google Scholar 

  27. K.N. Tu and R.D. Thompson, Acta Metall. 30, 947 (1982).

    Article  CAS  Google Scholar 

  28. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  CAS  Google Scholar 

  29. W.W. Mullins, J. Appl. Phys. 28, 333 (1957).

    Article  CAS  Google Scholar 

  30. L.A. Clevenger, B. Arcot, W. Ziegier, E.G. Colgan, Q.Z. Hong, F.M. d’Heurie, C. Cabral, Jr., T.A. Gallo, and J.M.E. Harper, J. Appl. Phys. 83, 90 (1998).

    Article  CAS  Google Scholar 

  31. H.C. Bhedwar, K.K. Ray, S.D. Kulkarni, and V. Balasubramanian, Scripta Metall. 6, 919 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Piotrowski, G., Williams, J.J. et al. Influence of initial morphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cu joints. J. Electron. Mater. 32, 1403–1413 (2003). https://doi.org/10.1007/s11664-003-0108-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0108-0

Key words

Navigation