Skip to main content
Log in

Mechanical Property Evaluation of Sn-3.0A-0.5Cu BGA Solder Joints Using High-Speed Ball Shear Test

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The traditional ball shear test is not suitable for evaluating joint reliability under drop loading, since the applied test speeds, usually lower than 5 mm/s, are well below the impact velocity applied to the solder joint in a drop test. The present study expands recently reported research by investigating the effect of thermal aging on the joint strength and fracture mode of Sn-3.0Ag-0.5Cu ball grid arrays during high-speed shear testing, with a shear height of 50 μm and a shear speed ranging from 0.01 m/s to 3 m/s. The test specimens were aged at 393 K for 1000 h. After reflow, a (Ni,Cu)3Sn4 intermetallic compound (IMC) layer was observed at the solder/Ni-P interface and the thickness of the IMC layer was increased through the aging process. The shear strength increased with increasing shear speed. The fracture surface of the solder joints showed three different fracture modes according to the shear speed and aging time. The fracture mode changed from ductile fracture to brittle fracture with increasing shear speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Zbrzezny, P. Snugovsky, and D.D. Perovic, Microelectron. Reliab. 47, 2205 (2007).

    Article  CAS  Google Scholar 

  2. Y.S. Lai, P.F. Yang, and C.L. Yeh, Microelectron. Reliab. 46, 645 (2006).

    Article  CAS  Google Scholar 

  3. E.H. Wong, R. Rajoo, S.K.W. Seah, C.S. Selvanayagam, W.D. van Driel, J.F.J.M. Caers, X.J. Zhao, N. Owen, L.C. Tan, M. Leoni, P.L. Eu, Y.-S. Lai, and C.-L. Yeh, Microelectron. Reliab. 48, 1069 (2008).

    Article  CAS  Google Scholar 

  4. Y.S. Lai, P.C. Yang, C.L. Yeh, and T.H. Wang, Proceedings of the 38th International Symposium Microelectronics (Philadelphia: IEEE, 2005), pp. 199–205.

  5. C. Birzer, B. Rakow, R. Steiner, and J. Walter, Proceedings of the 7th Electronic Packaging Technology Conference (Singapore: IEEE, 2005), pp. 255–261.

  6. D.Y.R. Chong, F.X. Che, J.H.L. Pang, K. Ng, J.Y.N. Tan, and P.T.H. Low, Microelectron. Reliab. 46, 1160 (2006).

    Article  CAS  Google Scholar 

  7. F. Song, S.W. Ricky Lee, K. Newman, B. Sykes, and S.␣Clark, Proceedings of the 2007 Electronic Components and Technology Conference (Reno: IEEE, 2007), pp. 364–372.

  8. E. Kaulfersch, S. Rzepka, V. Ganeshan, A. Muller, and B. Michel, Proceedings of the International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems (London: IEEE, 2007), pp. 1–4.

  9. B. Zhao, B. An, F.S. Wu, and Y.P. Wu, Proceedings of the 7th International Conference on Electronics Packaging Technology (Shanghai: IEEE, 2006), pp. 1–5.

  10. C.L. Yeh, Y.S. Lai, H.C. Chang, and T.H. Chen, Microelectron. Reliab. 47, 1127 (2007).

    Article  CAS  Google Scholar 

  11. JESD22-B117A, JEDEC Solid State Technology Association, 2006.

  12. J.W. Kim and S.B. Jung, Int. J. Solids Struct. 43, 1928 (2006).

    Article  MATH  CAS  MathSciNet  Google Scholar 

  13. J.W. Kim and S.B. Jung, Mater. Sci. Eng. A 371, 267 (2004).

    Article  Google Scholar 

  14. J.W. Kim, D.G. Kim, and S.B. Jung, Microelectron. Reliab. 46, 535 (2006).

    Article  CAS  Google Scholar 

  15. Y.D. Jeon, S. Nieland, A. Ostmann, H. Reichl, and K.W. Paik, J. Electron. Mater. 32, 548 (2003).

    Article  CAS  ADS  Google Scholar 

  16. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).

    Article  CAS  ADS  Google Scholar 

  17. G.E. Dieter, Mechanical Metallurgy (New York: McGraw-Hill, 1988).

    Google Scholar 

  18. A. Nadai, Theory of Flow and Fracture of Solids (New York: McGraw-Hill, 1950).

    Google Scholar 

  19. G.R. Johnson and W.H. Cook, Proceedings of 7th International Symposium on Ballistics (Hague: Technomic. Pub. Co., 1983), pp. 541–549.

  20. F.J. Zerilli and R.W. Armstrong, J. Appl. Phys. 61, 1816 (1987).

    Article  CAS  ADS  Google Scholar 

  21. S.R. Bodner and Y.J. Partom, J. Appl. Mech. 42, 385 (1975).

    Google Scholar 

  22. P.S. Symmonds, Behaviour of Materials under Dynamic Loading (New York: ASME, 1965).

    Google Scholar 

  23. J.W. Kim, J.W. Yoon, and S.B. Jung, Mater. Sci. Forum 449, 897 (2004).

    Article  Google Scholar 

  24. J.M. Koo and S.B. Jung, Microelectron. Reliab. 47, 2169 (2007).

    Article  CAS  Google Scholar 

  25. J.W. Jang, P.D. Ananda, E.D. James, L.P. Steve, L.O. Norman, J.K. Lin, and R.F. Darrel, IEEE Trans. Electron. Packag. Manuf. 30, 49 (2007).

    Article  CAS  Google Scholar 

  26. T.T. Mattila and J.K. Kivilahti, J. Electron. Mater. 34, 969 (2005).

    Article  CAS  ADS  Google Scholar 

  27. Y.H. Xia, C.Y. Lu, and X.M. Xie, J. Electron. Mater. 36, 1129 (2007).

    Article  CAS  ADS  Google Scholar 

  28. W. Peng and M.E. Marques, J. Electron. Mater. 36, 1679 (2007).

    Article  CAS  ADS  Google Scholar 

  29. S.J. Jeon, S.M. Hyun, H.J. Lee, J.W. Kim, S.S. Ha, J.W. Yoon, S.B. Jung, and H.J. Lee, Microelectron. Eng. 85, 1967 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Boo Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, SS., Jang, JK., Ha, SO. et al. Mechanical Property Evaluation of Sn-3.0A-0.5Cu BGA Solder Joints Using High-Speed Ball Shear Test. J. Electron. Mater. 38, 2489–2495 (2009). https://doi.org/10.1007/s11664-009-0916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0916-y

Keywords

Navigation