Skip to main content
Log in

Effects of Ni(P) layer thickness and Pd layer type in thin-Au/Pd/Ni(P) surface finishes on interfacial reactions and mechanical strength of Sn–58Bi solder joints during aging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To analyze the effects of Ni(P) layer thickness and Pd layer composition on interfacial reactions and the mechanical reliabilities of Sn–58Bi solder joints, we evaluated a phosphorous-contained Ni (Ni(P)) layer thicknesses ranging from 0.3 to 1.0 μm with Au/Pd/Ni(P) or a phosphorous-contained Pd [Au/Pd(P)/Ni(P)] layer in thin-electroless-nickel electroless-palladium immersion gold (ENEPIG) with Sn–58Bi solder joint after aging test. (Pd, Au)Sn4 and Ni3Sn4 intermetallic compounds (IMCs) were dominantly formed at the interfaces of the 0.3 µm to 1.0 μm Ni(P) layers in the thin-Au/Pd/Ni(P) or thin-Au/Pd(P)/Ni(P) joints after aging at 85 °C and 95 °C for 100 h. However, the Ni3Sn4 IMC layer changed to the (Cu, Ni)6Sn5 IMC layer in the 0.3 μm Ni(P) layer contained the Au/Pd/Ni(P) joint after aging at 85 °C for 300 h, because the Cu elements in a Cu pad penetrated through the P-rich Ni layer. Otherwise, the Ni3Sn4 IMC of the 0.3 μm Ni(P) layer in the Au/Pd(P)/Ni(P) joint changed to (Ni, Cu)3Sn4 IMC after aging at 105 °C and 115 °C for 1000 h, due to the P in the Pd layer, which affects the IMC growth rate. The 0.7 µm and 1.0 μm Ni(P) layers in the Au/Pd/Ni(P) or Au/Pd(P)/Ni(P) joints were attributed to the Ni3Sn4 IMC layer for whole aging conditions because the thick P-rich Ni layer suppress Sn and Cu diffusion during aging. In a high-speed shear tests, the shear strength of the 0.3 μm Ni(P) layer in the Au/Pd/Ni(P) joints was relatively low than that of the Au/Pd(P)/Ni(P) joints after aging at 105 °C and 115 °C for 100 h. Ni3Sn4 IMC was observed at the fracture surfaces of the 0.3 μm Ni(P) layer in the Au/Pd(P)/Ni(P) joints after aging at 115 °C for 1000 h, whereas the fracture surface of the Au/Pd/Ni(P) joint was Cu substrate. Therefore, Ni(P) layer thicknesses in excess of 0.7 μm and the P-contain Pd layer in the thin-ENEPIG surface finish with Sn–58Bi solder joints are expected to be highly reliable after long-term aging treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. T.K. Lee, H. Ma, K.C. Liu, J. Xue, J. Electron. Mater. 39, 2564 (2010). https://doi.org/10.1007/s11664-010-1352-8

    Article  CAS  Google Scholar 

  2. Y. Oda, N. Fukumuro, S. Yae, J. Electron. Mater. 47, 2507 (2018). https://doi.org/10.1007/s11664-018-6067-2

    Article  CAS  Google Scholar 

  3. Y.W. Yen, P.H. Tsai, Y.K. Fang, S.C. Lo, Y.P. Hsieh, C. Lee, J. Alloys Compd. 503, 25 (2010). https://doi.org/10.1016/j.jallcom.2010.04.241

    Article  CAS  Google Scholar 

  4. C.Y. Ho, J.G. Duh, C.W. Lin, C.J. Lin, Y.H. Wu, H.C. Hong, T.H. Wang, J. Mater. Sci. 48, 2724 (2013). https://doi.org/10.1007/s10853-012-7070-2

    Article  CAS  Google Scholar 

  5. T. You, Y. Kim, W. Jung, J. Moon, H. Choe, J. Alloys Compd. 486, 242 (2009). https://doi.org/10.1016/j.jallcom.2009.07.085

    Article  CAS  Google Scholar 

  6. H.W. Miao, J.G. Duh, Mater. Chem. Phys. 71, 255 (2001). https://doi.org/10.1016/S0254-0584(01)00298-X

    Article  CAS  Google Scholar 

  7. A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys Compd. 509, 3319 (2011). https://doi.org/10.1016/j.jallcom.2010.12.048

    Article  CAS  Google Scholar 

  8. M.N. Islam, Y.C. Chan, Mater. Sci. Eng. B 117, 246 (2005). https://doi.org/10.1016/j.mseb.2004.11.027

    Article  CAS  Google Scholar 

  9. B.F. Dyson, T.R. Anthony, D. Turnbull, Appl. Phys. Lett. 38, 3408 (1967). https://doi.org/10.1063/1.1710127

    Article  CAS  Google Scholar 

  10. J.W. Yoon, S.B. Jung, J. Alloys Compd. 448, 177 (2008). https://doi.org/10.1016/j.jallcom.2006.10.052

    Article  CAS  Google Scholar 

  11. C.M. Tsai, W.C. Luo, C.W. Chang, Y.C. Shieh, C.R. Kao, J. Electron. Mater. 33, 1424 (2004). https://doi.org/10.1007/s11664-004-0082-1

    Article  CAS  Google Scholar 

  12. J.W. Yoon, S.B. Jung, J. Alloys Compd. 458, 200 (2008). https://doi.org/10.1016/j.jallcom.2007.04.014

    Article  CAS  Google Scholar 

  13. Y.L. Lin, Y.S. Lai, C.M. Tsai, C.R. Kao, J. Electron. Mater. 35, 2147 (2006). https://doi.org/10.1007/s11664-006-0325-4

    Article  CAS  Google Scholar 

  14. P. Liu, P. Yao, J. Liu, J. Alloys Compd. 470, 188 (2009). https://doi.org/10.1016/j.jallcom.2008.02.102

    Article  CAS  Google Scholar 

  15. L.C. Tsao, M.W. Wu, S.Y. Chang, J. Mater. Sci: Mater. Electron. 23, 681 (2012). https://doi.org/10.1007/s10854-011-0471-1

    Article  CAS  Google Scholar 

  16. C.F. Tseng, J.G. Duh, Mater. Sci. Eng. A 580, 169 (2013). https://doi.org/10.1016/j.msea.2013.05.058

    Article  CAS  Google Scholar 

  17. C.M. Liu, C.E. Ho, W.T. Chen, C.R. Kao, J. Electron. Mater. 30, 1152 (2001). https://doi.org/10.1007/s11664-001-0143-7

    Article  CAS  Google Scholar 

  18. W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, C.R. Kao, Mater. Sci. Eng. A 396, 385 (2005). https://doi.org/10.1016/j.msea.2005.02.008

    Article  CAS  Google Scholar 

  19. C.Y. Ho, J.G. Duh, Mater. Sci. Eng. A 611, 162 (2014). https://doi.org/10.1016/j.msea.2014.05.049

    Article  CAS  Google Scholar 

  20. W.H. Wu, C.S. Lin, S.H. Huang, C.E. Ho, J. Electron. Mater. 39, 2387 (2010). https://doi.org/10.1007/s11664-010-1351-9

    Article  CAS  Google Scholar 

  21. B.M. Chung, Y.H. Baek, J. Choi, J.Y. Huh, J. Electron. Mater. 41, 3348 (2012). https://doi.org/10.1007/s11664-012-2320-2

    Article  CAS  Google Scholar 

  22. K.P.L. Pun, M.N. Islam, J. Rotanson, C.W. Cheung, A.H.S. Chan, J. Electron. Mater. 47, 5191 (2018). https://doi.org/10.1007/s11664-018-6385-4

    Article  CAS  Google Scholar 

  23. Z. Liu, J. Cai, Q. Wang, X. He, Y. Chen, J. Electron. Mater. 43, 3341 (2014). https://doi.org/10.1007/s11664-014-3236-9

    Article  CAS  Google Scholar 

  24. J.W. Yoon, B.I. Noh, S.B. Jung, J. Electron. Mater. 40, 1950 (2011). https://doi.org/10.1007/s11664-011-1686-x

    Article  CAS  Google Scholar 

  25. Y.M. Kim, J.Y. Park, Y.H. Kim, J. Electron. Mater. 41, 763 (2012). https://doi.org/10.1007/s11664-012-1921-0

    Article  CAS  Google Scholar 

  26. C.E. Ho, L.H. Hsu, C.H. Yang, T.C. Yeh, P.T. Lee, Thin Solid Films 584, 257 (2015). https://doi.org/10.1016/j.tsf.2014.12.026

    Article  CAS  Google Scholar 

  27. T.T. Chou, C.J. Fleshman, H. Chen, J.G. Duh, J. Mater. Sci: Mater. Electron. 30, 2342 (2019). https://doi.org/10.1007/s10854-018-0507-x

    Article  CAS  Google Scholar 

  28. J.W. Yoon, J.H. Back, S.B. Jung, Surf. Interface Anal. 50, 1046 (2018). https://doi.org/10.1002/sia.6419

    Article  CAS  Google Scholar 

  29. J. Keller, D. Baither, U. Wilke, G. Schmitz, Acta Mater. 59, 2731 (2011). https://doi.org/10.1016/j.actamat.2011.01.012

    Article  CAS  Google Scholar 

  30. J.H.L. Pang, T.H. Low, B.S. Xiong, X. Luhua, C.C. Neo, Thin Solid Films 462–463, 370 (2004). https://doi.org/10.1016/j.tsf.2004.05.092

    Article  CAS  Google Scholar 

  31. J. Kim, S.B. Jung, J.W. Yoon, J. Alloys Compd. 820, 153396 (2020). https://doi.org/10.1016/j.jallcom.2019.153396

    Article  CAS  Google Scholar 

  32. M. Aamir, R. Muhammad, N. Ahmed, M. Waqas, Microelectron. Reliab. 78, 311 (2017). https://doi.org/10.1016/j.microrel.2017.09.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Boo Jung or Jeong-Won Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Jung, SB. & Yoon, JW. Effects of Ni(P) layer thickness and Pd layer type in thin-Au/Pd/Ni(P) surface finishes on interfacial reactions and mechanical strength of Sn–58Bi solder joints during aging. J Mater Sci: Mater Electron 31, 19852–19874 (2020). https://doi.org/10.1007/s10854-020-04509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04509-x

Navigation