Skip to main content

Advertisement

Log in

A review on electrocatalysis for alkaline oxygen evolution reaction (OER) by Fe-based catalysts

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrocatalytic water splitting provides an eco-friendly and efficient way to generate hydrogen energy. The anodic half reaction, oxygen evolution reaction (OER), with a four-electron process leads to sluggish kinetics and then high-energy consumption. Devising and synthesis of efficient and low-cost OER catalysts could overcome this issue. Fe-based non-noble electrocatalysts are observed to have suitable atomic and electronic structures; moreover, they are cheaper and more accessible than noble electrocatalysts. Various Fe-based electrocatalysts are showing a promising catalytic performance for OER. In this review, we concentrate on recent advancement and progress in utilizing these Fe-based catalysts with different supporting materials, including carbon-based materials, layered double hydroxides, Prussian blue analogous, metal–organic frameworks, and so forth. We highlight the OER mechanism and some typical OER electrochemical parameters of Fe-based electrocatalysts supported on various supporting materials from the experimental and theoretical viewpoint. With the gathered information provided in this review, some challenges and expectations for promoting the catalytic performance of Fe-based electrocatalysts are deeply discussed. Indeed, this review could furnish the design of more efficient non-noble metal electrocatalysts with promising directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reproduced with permission from ref. [75]. Copyright 2021, John Wiley and sons

Figure 2

Reproduced with permission from ref. [80]. Copyright 2013, Royal Society of Chemistry. b The plot of Gibbs free energy diagram of OER versus the reaction coordination. Reproduced with permission from ref. [29]. Copyright 2010, Elsevier

Figure 3

Reproduced with permission from ref. [83]. Copyright 2011 John Wiley and Sons

Figure 4

Reproduced with permission from ref. [84]. Copyright 2019, Elsevier

Figure 5

Reproduced with permission from ref. [85]. Copyright 2018, Elsevier

Figure 6

Reproduced with permission from ref. [86]. Copyright 2016, American Chemical Society

Figure 7

Reproduced with permission from ref. [87]. Copyright 2015, Royal Society of Chemistry. d The schematic illustration of the Fe@C structure. e SEM of Fe@C-NG/NCNTs. f LSV curves in 1 M KOH. g Tafel plots. Reproduced with permission from ref. [88]. Copyright 2013, Royal Society of Chemistry

Figure 8

Reproduced with permission from ref. [89]. Copyright 2016, Royal Society of Chemistry. e TEM of Fe3C@CNTs (Inset: the thickness of multi-walled CNTs). f HRTEM of one Fe3C NP of Fe3C@CNTs. g Polarization curves in 1.0 M KOH solution. h Tafel plots. Reproduced with permission from ref. [90]. Copyright 2021, Elsevier

Figure 9

Reproduced with permission from ref. [92]. Copyright 2013, Royal Society of Chemistry. c SEM of the Fe1Ni1–N–CNFs. d Polarization curves obtained in 0.1 M KOH solution with a scan rate of 0.005 V s−1. e Tafel plots. Reproduced with permission from ref. [91]. Copyright 2017, Elsevier

Figure 10

Reproduced with permission from ref. [93]. Copyright 2021, Elsevier. c HRTEM of Fe3O4@Co9S8/rGO. d LSV curves in 1 M KOH solution. e OER polarization curves for the Fe3O4@Co9S8/rGO-2 before and after 1000 cycles of accelerated stability test. Reproduced with permission from ref. [96]. Copyright 2016, John Wiley and Sons. f HRTEM of the RGO-Ni–Fe LDH. g iR-corrected polarization curves. h E-t curves of different catalysts on the GC at a constant current density of 2.5 mA cm−2 in 0.1 M KOH. Reproduced with permission from ref. [95]. Copyright 2016, Elsevier. i, j SEMs of Ni0.7Fe0.3Se2/rGO-30% catalyst. Reproduced with permission from ref. [94]. Copyright 2020, Elsevier

Figure 11

Reproduced with permission from ref. [97]. Copyright 1969, Elsevier. e SEM of Er0.4 Fe-MOF/NF. f LSV curves tested in 1.0 M KOH. g i-t curves at current densities of 100 mA cm−2 (Inset: the SEM image after testing). Reproduced with permission from ref 98. Copyright 2021, MDPI. h SEM of NiFe–MOF–74/NF. i TEM of NiFe-MOF-74/NF. e CV curves of NiFe–MOF–74/NF, Ni–MOF–74/NF, NF and IrO2. j CV curves recorded before and after 3000 uninterrupted CV cycles. Reproduced with permission from ref. [99]. Copyright 2018, Royal Society of Chemistry

Figure 12

Reproduced with permission from ref. [100]. Copyright 2019, John Wiley and Sons. d Schematic illustration of synthesis of Ni-MOF@Fe-MOF hybrid nanosheets. e Overpotentials and current density of different catalysts at 10 mA cm−2 and 1.50 V versus RHE, respectively. f RRDE measurement of 2D Ni–MOF@Fe–MOF hybrid in O2 − saturated 1 M KOH at a rotation rate of 1600 rpm with the constant ring potential of 1.50 V versus RHE. Reproduced with permission from ref. [101]. Copyright 2018, John Wiley and Sons. g SEM of Ni-doped FeF2. h Polarization curves. i Nyquist plots. Reproduced with permission from ref. [102]. Copyright 1996, Royal Society of Chemistry. j The Gibbs free energy diagrams for OER on Fe36C108O156, Fe26Co10C108O156, Fe30Ni6C108O156 and Fe26Ni2Co8C108O156 systems. k FE-SEM of Fe2.1Ni0.2Co0.7-MIL/CFP. l The comparisons of the overpotential at the j = 10 mA cm−2. Reproduced with permission from ref. [103]. Copyright 2021, Elsevier

Figure 13

Reproduced with permission from ref. [104]. Copyright 2019, John Wiley and Sons. d SEM (Inset: the size distribution histogram of FeNi3-BTC MOF). e The overpotentials at 10 mA cm−2 and the current densities at 300 mV versus the RHE for the studied catalysts. f CP curve of FeNi3-BTC at the potential corresponding to the current density of 10 mA cm−2 (Inset: the LSVs before and after 15 h of CP measurement). Reproduced with permission from ref. [105]. Copyright 2019, Elsevier

Figure 14

Reproduced with permission from ref. [106]. Copyright 2022, Elsevier. g SEM of Ni–Fe-MoO4-LDH. h LSV curves of all catalytic electrodes (electrolyte: 0.1 M KOH, scan rate: 10 mV∙s−1) i Nyquist diagram (350 mV overpotential, 1 M KOH, room temperature). Reproduced with permission from ref. [108]. Copyright 2019, Elsevier. j SEM of the prepared Ni–Fe-P at 350 °C. k LSV curves. l Long-time durability test of the Ni–Fe-P-350 electrolyzer at 10 mA cm−2 (Inset: the photograph during the overall water splitting). Reproduced with permission from ref. [109]. Copyright 2017, American Chemical Society

Figure 15

Reproduced with permission from ref. [110]. Copyright 2017, John Wiley and Sons

Figure 16

Reproduced with permission from ref. [111]. Copyright 2021, American Chemical Society

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Kreps BH (2020) The rising costs of fossil-fuel extraction: an energy crisis that will not go away. Am J Sociol 79:695–717. https://doi.org/10.1111/ajes.12336

    Article  Google Scholar 

  2. Yang ZF, Li ZC, Li PF, Gao CY, Zhang H (2020) NiO/Ni nanocomposites embedded in 3D porous carbon with high performance for lithium-ion storage. J Mater Sci 55:1659–1672. https://doi.org/10.1007/s10853-019-04075-6

    Article  CAS  Google Scholar 

  3. Zhang ZW, Zhou JM, Wei HL, Dai YF, Li SJ, Shi HJ, Xu G (2020) Construction of hierarchical NiFe-LDH/FeCoS2/CFC composites as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reaction. J Mater Sci 55:16625–16640. https://doi.org/10.1007/s10853-020-05182-5

    Article  CAS  Google Scholar 

  4. Wang JY et al (2019) Fabrication of dispersive α-Co(OH)2 nanosheets on graphene nanoribbons for boosting their oxygen evolution performance. J Mater Sci 54:7692–7701. https://doi.org/10.1007/s10853-019-03421-y

    Article  CAS  Google Scholar 

  5. Zhou L, Sun ML, Kou JH, Lu CH, Li L, Zhang FS, Xu ZZ (2021) Embedding of stereo molecular scaffold into the planar g-C3N4 nanosheets for efficient photocatalytic hydrogen evolution under ordinary pressure. J Mater Sci 56:1630–1642. https://doi.org/10.1007/s10853-020-05287-x

    Article  CAS  Google Scholar 

  6. Zhang WG, Liu YH, Zhou HB, Li J, Yao SW, Wang HZ (2019) A high-performance electrocatalyst of CoMoP@NF nanosheet arrays for hydrogen evolution in alkaline solution. J Mater Sci 54:11585–11595. https://doi.org/10.1007/s10853-019-03704-4

    Article  CAS  Google Scholar 

  7. Awan AB, Khan ZA (2014) Recent progress in renewable energy – Remedy of energy crisis in Pakistan. Renew Sust Energ Rev 33:236–253. https://doi.org/10.1016/j.rser.2014.01.089

    Article  Google Scholar 

  8. Yan JS, Hu LQ, Cui LK, Shen QQ, Liu XG, Xue JHS, JB, (2021) Synthesis of disorder–order TaON homojunction for photocatalytic hydrogen generation under visible light. J Mater Sci 56:9791–9806. https://doi.org/10.1007/s10853-021-05896-0

    Article  CAS  Google Scholar 

  9. Liu X, Wang DD, Du YC, Zhang XM, Ye SF (2021) Construction of hierarchical Ti3C2Tx@TiO2/MoS2 covered manganese oxides for advanced oxygen evolution electrocatalysis. J Mater Sci 56:18174–18187. https://doi.org/10.1007/s10853-021-05842-0

    Article  CAS  Google Scholar 

  10. Zhu YL, Yuan JH, Song YQ, Wang S, Xue KH, Xu M, Cheng XM, Miao XS (2019) Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting. J Mater Sci 54:11485–11496. https://doi.org/10.1007/s10853-019-03699-y

    Article  CAS  Google Scholar 

  11. Ma JJ (2021) Biomass-based protic ionic liquid derived N, P, co-doped porous carbon-coated CoP nanocrystals for efficient hydrogen evolution reaction. J Mater Sci 56:18188–18199. https://doi.org/10.1007/s10853-021-06235-z

    Article  CAS  Google Scholar 

  12. Huang WT, Su SQ et al (2021) Wood-derived electrode supporting CVD-grown ReS2 for efficient and stable hydrogen production. J Mater Sci 56:1551–1560. https://doi.org/10.1007/s10853-020-05248-4

    Article  CAS  Google Scholar 

  13. Wang WH, Tesio AY, Mara OM, Romero PG, Tonti D (2022) Facile preparation of glycine-based mesoporous graphitic carbons with embedded cobalt nanoparticles. J Mater Sci 57:105959. https://doi.org/10.1007/s10853-022-07421-3

    Article  CAS  Google Scholar 

  14. Tang QB, Guo YJ (2019) Highly sensitive and selective love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature. J Mater Sci 54:11925–11935. https://doi.org/10.1007/s10853-019-03764-6

    Article  CAS  Google Scholar 

  15. Chen JM (2021) Carbon neutrality: toward a sustainable future. Innovation 2:100127. https://doi.org/10.1016/j.xinn.2021.100127

    Article  CAS  Google Scholar 

  16. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. https://doi.org/10.1038/nature11475

    Article  CAS  Google Scholar 

  17. Lai JP, Huang BL, Chao YG, Chen X, Guo SJ (2019) Strongly coupled nickel–cobalt nitrides/carbon hybrid zanocages with Pt-like activity for hydrogen evolution catalysis. Adv Mater 31:1805541. https://doi.org/10.1002/adma.201805541

    Article  CAS  Google Scholar 

  18. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086. https://doi.org/10.1039/c4cs00470a

    Article  CAS  Google Scholar 

  19. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365. https://doi.org/10.1039/c6cs00328a

    Article  CAS  Google Scholar 

  20. Friebel D, Louie MW, Bajdich M et al (2015) Roberto Alonso-Mori, Ryan C. Davis, John R. Bargar, Jens K. Nørskov, Anders Nilsson, and Alexis T. Bell. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J Am Chem Soc 137:1305–1313. https://doi.org/10.1021/ja511559d

    Article  CAS  Google Scholar 

  21. You B, Tang MT, Tsai C, Frank AP, Zheng XL, Li H (2019) Enhancing electrocatalytic water splitting by strain engineering. Adv Mater 31:1807001. https://doi.org/10.1002/adma.201807001

    Article  CAS  Google Scholar 

  22. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sust Energ Rev 67:597–611. https://doi.org/10.1016/j.rser.2016.09.044

    Article  CAS  Google Scholar 

  23. Anantharaj S, Aravindan V (2019) Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis. Adv Ener Mater 2:1902666e95. https://doi.org/10.1002/aenm.201902666

    Article  CAS  Google Scholar 

  24. Tong Y, Chen L, Dyson PJ, Fei ZF (2021) Boosting hydrogen production via urea electrolysis on an amorphous nickel phosphide/graphene hybrid structure. J Mater Sci 56:17709–17720. https://doi.org/10.1007/s10853-021-06391-2

    Article  CAS  Google Scholar 

  25. Wang JH, Cui W, Liu Q, Xing ZC, Asiri AM, Sun XP (2016) Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28:215e30. https://doi.org/10.1002/adma.201502696

    Article  CAS  Google Scholar 

  26. Han L, Dong SJ, Wang EK (2016) Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 28:9266–9291. https://doi.org/10.1002/adma.201602270

    Article  CAS  Google Scholar 

  27. Li PP, Zhao RB, Chen HY et al (2019) Recent advances in the development of water oxidation electrocatalysts at mild pH. Small 15:1805103. https://doi.org/10.1002/smll.201805103

    Article  CAS  Google Scholar 

  28. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energ 38:4901–4934. https://doi.org/10.1016/J.IJHYDENE.2013.01.151

    Article  CAS  Google Scholar 

  29. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. Chem Cat Chem 2:724–761. https://doi.org/10.1002/cctc.201000126

    Article  CAS  Google Scholar 

  30. Dang Y, Han P, Li Y, Zhang Y, Zhou YZ (2020) Low-crystalline mixed Fe–Co–MOFs for efficient oxygen evolution electrocatalysis. J Mater Sci 55:13951–13963. https://doi.org/10.1007/s10853-020-05026-2

    Article  CAS  Google Scholar 

  31. Mills A (1989) Heterogeneous redox catalysts for oxygen and chlorine evolution. Chem Soc Rev 18:285–316. https://doi.org/10.1039/cs9891800285

    Article  CAS  Google Scholar 

  32. Yagi M, Kaneko M (2001) Molecular catalysts for water oxidation. Chem Rev 101:21–35. https://doi.org/10.1021/CR980108L

    Article  CAS  Google Scholar 

  33. Jiao Y, Zheng Y, Jaronie M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086. https://doi.org/10.1039/c4cs00470a

    Article  CAS  Google Scholar 

  34. Lian JQ, Wu YH, Sun JJ (2020) High current density electrodeposition of NiFe/Nickel foam as a bifunctional electrocatalyst for overall water splitting in alkaline electrolyte. J Mater Sci 55:15140–15151. https://doi.org/10.1007/s10853-020-05080-w

    Article  CAS  Google Scholar 

  35. Li SS, Gao YQ, Li N, Ge L, Bu XH, Fen OY (2021) Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ Sci 14:1897–1927. https://doi.org/10.1039/D0EE03697H

    Article  CAS  Google Scholar 

  36. Feng D, Faheem MB, Fu J, Xiao YQ, Li CL, Li YB (2020) Fe-based electrocatalysts for oxygen evolution reaction: progress and perspectives. ACS Catal 10:4019–4047. https://doi.org/10.1021/acscatal.9b05445

    Article  CAS  Google Scholar 

  37. Tahirad M, Pan L, Idrees F, Zhang XW, Wang L, Zou JJ, Wang ZL (2017) Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–157. https://doi.org/10.1016/J.NANOEN.2017.05.022

    Article  Google Scholar 

  38. Liu X, Wang L, Yu P, Tian CG, Sun FF, Ma JY, Li W, Fu HG (2018) A stable bifunctional catalyst for rechargeable zinc-air batteries: iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew Chem 130:16398–16402. https://doi.org/10.1002/anie.201809009

    Article  CAS  Google Scholar 

  39. Huang ZF, Song JJ, Dou S, Li XG, Wang J, Wang X (2019) Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 1:1494–1518. https://doi.org/10.1016/j.matt.2019.09.011

    Article  Google Scholar 

  40. McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J of the Am Chem Soc 137:4347–4357. https://doi.org/10.1021/ja510442p

    Article  CAS  Google Scholar 

  41. Mojet BL, Miller JT, Ramaker DE, Koningsberger DC (1999) A new model describing the metal-support interaction in noble metal catalysts. J Catal 186:373–386. https://doi.org/10.1006/JCAT.1999.2568

    Article  CAS  Google Scholar 

  42. Lin SM, Yu YH, Sun DF, Meng FY, Chu WH, Huang LY, Ren J, Su QM, Ma SF, Xu BS (2021) FeNi2P Three-dimensional oriented nanosheet array bifunctional catalysts with better full water splitting performance than the full noble metal catalysts. J of Colloid Interf Sci 608:2192–2202. https://doi.org/10.1016/j.jcis.2021.09.166

    Article  CAS  Google Scholar 

  43. Liu M, Hof F, Moro M, Valenti G, Paolucci F, Pénicaud A (2020) Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water splitting. Nanoscale 12:20165–20170. https://doi.org/10.1039/d0nr05659f

    Article  CAS  Google Scholar 

  44. Shi Q, Zhu C, Du D, Lin Y (2019) Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev 48:3181–3192. https://doi.org/10.1039/c8cs00671g

    Article  CAS  Google Scholar 

  45. Gao F, Zhang YP, Wu ZY, You HM, Du YK (2021) Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coordin Chem Rev 436:213825. https://doi.org/10.1016/j.ccr.2021.2138256

    Article  CAS  Google Scholar 

  46. Zhang BW, Lui YH, Ni HW, Hu S (2017) Bimetallic (FexNi1−x)2P nanoarrays as exceptionally efficient electrocatalysts for oxygen evolution in alkaline and neutral media. Nano Energy 38:553–560. https://doi.org/10.1016/J.NANOEN.2017.06.032

    Article  CAS  Google Scholar 

  47. Zhao X, Fu Y, Wang J, Xu YJ, Tian JH, Yang RZ (2016) Ni-doped CoFe2O4 hollow nanospheres as efficient bi-functional catalysts. Electrochim Acta 201:172–178. https://doi.org/10.1016/J.ELECTACTA.2016.04.001

    Article  CAS  Google Scholar 

  48. Yan WN, Cao XC, Ke K, Tian JH, Jin C, Yang RZ (2016) One-pot synthesis of monodispersed porous CoFe2O4 nanospheres on graphene as an efficient electrocatalyst for oxygen reduction and evolution reactions. RSC Adv 6:307–313. https://doi.org/10.1039/C5RA23306B

    Article  CAS  Google Scholar 

  49. Ruiz-Cornejo JC, Sebastián D, Martínez-Huerta MV, Lázaro MJ (2019) Tantalum-based electrocatalysts prepared by a microemulsion method for the oxygen reduction and evolution reactions. Electrochim Acta 317:261–271. https://doi.org/10.1016/J.ELECTACTA.2019.05.145

    Article  CAS  Google Scholar 

  50. Zhang QQ, Liu N, Guan JQ (2019) Charge-transfer effects in Fe–Co and Fe–Co–Y oxides for electrocatalytic water oxidation reaction. ACS Appl Energy Mater 2:8903–8911. https://doi.org/10.1021/acsaem.9b01938

    Article  CAS  Google Scholar 

  51. Chen X, Wang XQ et al (2021) Vertical Fe(OH)3/Ni9S8 nanoarrays electrodeposited on stainless steel as binder-free electrocatalyst for highly efficient and stable oxygen evolution reaction. J Mater Sci 56:19144–19154. https://doi.org/10.1007/s10853-021-06460-6

    Article  CAS  Google Scholar 

  52. Li N, Qu SJ, Ma JJ, Shen WZ (2022) Iron and nitrogen anchored hierarchical hollow porous carbon microtubes for an electrocatalytic oxygen evolution reaction. J Alloy Compd 926:166746. https://doi.org/10.1016/j.jallcom.2022.166746

    Article  CAS  Google Scholar 

  53. Liu JH, He X, Wang YY, Sun ZJ, Liu YS, Liu BS, Li HD, Guo F, Li X (2022) Deep reconstruction of highly disordered iron/nickel nitrate hydroxide nanoplates for high-performance oxygen evolution reaction in alkaline media. J Alloy Compd 927:167060. https://doi.org/10.1016/j.jallcom.2022.167060

    Article  CAS  Google Scholar 

  54. Zhang XY, Li FT, Dorg YW, Dong B, Dai FN, Liu CG, Chai YM (2022) Dynamic anion regulation to construct S-doped FeOOH realizing 1000 mA cm(-2)-level-current-density oxygen evolution over 1000 h. Appl Catal B-Environ 315:121571. https://doi.org/10.1016/j.apcatb.2022.121571

    Article  CAS  Google Scholar 

  55. Sun SF, Zheng M, Cheng PF, Wu FG, Xu LP (2022) Porous bimetallic cobalt-iron phosphide nanofoam for efficient and stable oxygen evolution catalysis. J Colloid Interf Sci 626:515–523. https://doi.org/10.1016/j.jcis.2022.06.053

    Article  CAS  Google Scholar 

  56. Yang Y, Wei SY, Li YF, Guo DG, Liu HJ, Liu L (2022) Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution. Appl Catal B-Environ 314:121491. https://doi.org/10.1016/j.apcatb.2022.121491

    Article  CAS  Google Scholar 

  57. Wan CW, Jin J, Wei XY, Chen SZ, Zhang Y, Zhu TL, Qu HX (2022) Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction. J Mater Sci Technol 124:102–108. https://doi.org/10.1016/j.jmst.2022.01.022

    Article  Google Scholar 

  58. Wang ZP, Zhang JH, Wang Q, Jiang X, Huang K, Xiong XL (2021) Fast and facile synthesis of carbonate-modified NiFe layered double hydroxide nanosheets by dielectric barrier discharge microplasma: mechanism and application in enhanced water oxidation. J Mater Sci 56:8115–8126. https://doi.org/10.1007/s10853-021-05798-1

    Article  CAS  Google Scholar 

  59. Ge ZH, Fu B, Zhao JP, Li X, Ma B, Chen YT (2020) A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. J Mater Sci 55:14081–14104. https://doi.org/10.1007/s10853-020-05010-w

    Article  CAS  Google Scholar 

  60. Khan MA, Li HF, Zeng YF, Muhammed AYA, Lu F, Zhou M (2022) The synthesis of highly efficient NiFe hydroxide@CoS electrocatalyst for oxygen evolution reaction. J Mater Sci 57:7804–7813. https://doi.org/10.1007/s10853-022-07150-7

    Article  CAS  Google Scholar 

  61. Ding JJ, Zhang MK, Wei XQ, Song WW, Wang J, Sun TM, Zhu JL, Wang MM (2021) An advanced NiFe-LDH nanoclusters arrays for high-efficient full water splitting. J Mater Sci 56:19466–19475. https://doi.org/10.1007/s10853-021-06451-7

    Article  CAS  Google Scholar 

  62. Guan HX, Wang N, Feng XX, Bian SK, Li W, Chen Y (2021) FeMn bimetallic MOF directly applicable as an efficient electrocatalyst for overall water splitting. Colloid Surfac A: Physicochem Eng Asp 624:126596. https://doi.org/10.1016/J.COLSURFA.2021.126596

    Article  CAS  Google Scholar 

  63. Tsai FT, Deng YF, Pao CW, Chen JL, Lee J, Lai KT, Liaw WF (2020) HER/OER mechanistic study of FeCoNi-based electrocatalyst for alkaline water splitting. J of Mater Chem 8:9939–9950. https://doi.org/10.1039/d0ta01877e

    Article  CAS  Google Scholar 

  64. Morales DM, Kazakova MA, Dieckhöfer S, Selyutin AG, Golubtsov GV, Schuhmann W, Masa J (2019) Trimetallic Mn–Fe–Ni oxide nanoparticles supported on multi-walled carbon nanotubes as high-performance bifunctional ORR/OER electrocatalyst in alkaline media. Adv Funct Mater 30:1905992. https://doi.org/10.1002/adfm.201905992

    Article  CAS  Google Scholar 

  65. Feng XF, Gao Z, Xiao LH, Lai ZQ, Luo F (2020) A Ni/Fe complex incorporated into a covalent organic framework as a single-site heterogeneous catalyst for efficient oxygen evolution reaction. Inorg Chem front 7:3925–3931. https://doi.org/10.1039/d0qi00620c

    Article  CAS  Google Scholar 

  66. Liu C, Qian JX, Ye YF (2020) Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat Catal 4:36–45. https://doi.org/10.1038/s41929-020-00550-5

    Article  CAS  Google Scholar 

  67. Polo-Garzon F, Bao ZH, Zhang XY, Huang WX, Wu ZL (2019) Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catal 9:5692–5707. https://doi.org/10.1021/acscatal.9b01097

    Article  CAS  Google Scholar 

  68. Shao Q, Wang P, Zhu T, Huang X (2019) Low dimensional platinum-based bimetallic nanostructures for advanced catalysis. Acc of Chem Res 52:3384–3396. https://doi.org/10.1021/acs.accounts.9b00262

    Article  CAS  Google Scholar 

  69. Voiry D, Shin HS, Loh KP, Chhowalla M (2018) Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Rev Chem 2:0105. https://doi.org/10.1038/s41570-017-0105

    Article  CAS  Google Scholar 

  70. Xu BY, Zhang Y, Li LG, Shao Q, Huang XQ (2022) Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coordin Chem Rev 459:214388. https://doi.org/10.1016/j.ccr.2021.214388

    Article  CAS  Google Scholar 

  71. Tong X, Zhan XX, Rawach D, Chen ZS, Zhang GX, Sun SH (2020) Low-dimensional catalysts for oxygen reduction reaction. Prog Nat Sci-mater 30:787–795. https://doi.org/10.1016/j.pnsc.2020.09.011

    Article  CAS  Google Scholar 

  72. Zhou P, Meng X, Li L, Sun T (2020) P, S Co-doped g-C3N4 isotype heterojunction composites for high-efficiency photocatalytic H2 evolution. J Alloys Compd 827:154259. https://doi.org/10.1016/j.jallcom.2020.154259

    Article  CAS  Google Scholar 

  73. Miao X, Dai H, Chen J, Zhu J (2018) The enhanced method of hydroxyl radical generation in the heterogeneous UV-Fenton system with α-FeOOH as catalyst. Sep Purif Technol 200:36–43. https://doi.org/10.1016/j.seppur.2018.02.012

    Article  CAS  Google Scholar 

  74. Meng J, Lei H, Li X, Zhang W, Cao R (2020) The trans axial ligand effect on oxygen reduction. immobilization method may weaken catalyst design for electrocatalytic performance. J of Phys Chem C 134:16324–16331. https://doi.org/10.1021/acs.jpcc.0c05144

    Article  CAS  Google Scholar 

  75. Yu ZY, Bai Y, Tsekouras GJ, Cheng ZX (2021) Recent advances in Ni-Fe (Oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications. Nano Select 3:766–791. https://doi.org/10.1002/nano.202100286

    Article  CAS  Google Scholar 

  76. Birss VI, Damjanovic A, Hudson PG (1986) Oxygen evolution at platinum electrodes in alkaline solutions II. mechanism of the reaction. J Electrochem Soc 133:1621–1625. https://doi.org/10.1149/1.2100385

    Article  CAS  Google Scholar 

  77. Aghabarari B, Luque-Centeno JM, Capel-Sánchez M, Elorri MJL, Martínez-Huerta MV (2019) Ni-based composites from chitosan biopolymer a one-step synthesis for oxygen evolution reaction. Catalysts 9:471. https://doi.org/10.3390/catal9050471

    Article  CAS  Google Scholar 

  78. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem Cat Chem 3:1159–1165. https://doi.org/10.1002/cctc.201000397

    Article  CAS  Google Scholar 

  79. Bajdich M, García-Mota M, Vojvodic A, Nørskov JK, Bell AT (2013) Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. Am Chem Soc 135:13521–13530. https://doi.org/10.1021/ja405997s

    Article  CAS  Google Scholar 

  80. Cai ZY, Bu XM, Wang P, Ho JC, Yang J, Wang XY (2019) Recent advances on layered double hydroxide electrocatalysts for oxygen evolution reaction. J Mater Chem A 7:5069–5089. https://doi.org/10.1039/c8ta11273h

    Article  CAS  Google Scholar 

  81. Dang S, Zhu QL, Xu Q (2017) Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 3:17075–17089. https://doi.org/10.1038/natrevmats.2017.75

    Article  CAS  Google Scholar 

  82. Kotz R, Neff H, Stucki S (1984) Anodic iridium oxide films. J Electrochem Soc 131:72–77. https://doi.org/10.1149/1.2115548

    Article  Google Scholar 

  83. Fabbri E et al (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821. https://doi.org/10.1039/C4CY00669K

    Article  CAS  Google Scholar 

  84. Liu GP, Wang B, Ding PH, Wei WX, Ye YZ, Wang L, Zhu WS, Li HM, Xia JX (2020) In-situ synthesis strategy for CoM (M ¼ Fe, Ni, Cu) bimetallic nanoparticles decorated N-doped 1D carbon nanotubes/3D porous carbon for electrocatalytic oxygen evolution reaction. J Alloys Compd 815:152470. https://doi.org/10.1016/j.jallcom.2019.152470

    Article  CAS  Google Scholar 

  85. Kumar AVN, Li YH, Yu HJ, Yin SL, Xue HR, Xu Y, Li XN, Wang HJ, Wang L (2018) 3D graphene aerogel supported FeNi-P derived from electroactive nickel hexacyanoferrate as efficient oxygen evolution catalyst. Electrochim Acta 292:107–114. https://doi.org/10.1016/j.electacta.2018.08.103

    Article  CAS  Google Scholar 

  86. Zhao PP, Xu W, Hua X, Luo W, Chen SL, Cheng GZ (2016) Facile synthesis of a N-doped Fe3C@CNT/porous carbon hybrid for an advanced oxygen reduction and water oxidation electrocatalyst. J Phys Chem C 120:11006–11013. https://doi.org/10.1021/acs.jpcc.6b03070

    Article  CAS  Google Scholar 

  87. Li JS, Li SL, Tang YJ, Han M, Dai ZH, Bao JC, Lan YQ (2015) Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER. Chem Comm 51:2710–2713. https://doi.org/10.1039/c4cc09062d

    Article  CAS  Google Scholar 

  88. Wang QC, Lei YP, Chen ZY, Wu N, Wang YB, Wang B, Wang YD (2018) Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. J Mater Chem A 6:516–526. https://doi.org/10.1016/j.ijhydene.2019.05.062

    Article  CAS  Google Scholar 

  89. Zhang YQ, Jia GC, Wang HW, Bo OY, Rawat RS, Fan HJ (2017) Ultrathin CNTs@FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction. Mater Chem Front 1:709–715. https://doi.org/10.1039/c6qm00168h

    Article  CAS  Google Scholar 

  90. Wang M, Zhang Y, Peng T, Kumar M, Zhang QT, Zhao W (2021) Endohedral Fe3C decorated multi-walled CNTs as an efficient electrocatalyst for oxygen evolution. Diam Relat Mater 118:108508. https://doi.org/10.1016/j.diamond.2021.108508

    Article  CAS  Google Scholar 

  91. Zhao XM, Liu X, Huang BX, Wang P, Pei Y (2019) Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni Co, and Fe). J Mater Chem A 7:24583. https://doi.org/10.1039/c9ta08661g

    Article  CAS  Google Scholar 

  92. Wang Z, Li M, Fan LQ, Hana JN, Xiong YP (2017) Fe/Ni–N–CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media. Appl Surf Sci 401:89–99. https://doi.org/10.1016/j.apsusc.2016.12.242

    Article  CAS  Google Scholar 

  93. Gopi S, Panda A, Ramu AG, Theerthagiri J, Kim HS, Yun K (2021) Bifunctional electrocatalysts for water splitting from a bimetallic (V doped-NixFey) metal-organic framework MOF@graphene oxide composite. Int J Hydrog Energy: Article Press. https://doi.org/10.1016/j.ijhydene.2021.05.028

    Article  Google Scholar 

  94. Zhu M, Yan Q, Lu Q, Xue YQ, Yan YD, Yin JL, Zhu K, Cheng K, Ye K, Yan J, Cao DX, Wang GL (2020) Iron-doped NiSe2 in-situ grown on graphene as an efficient electrocatalyst for oxygen evolution reaction. J Electroanal Chem 866:114134. https://doi.org/10.1016/j.jelechem.2020.114134

    Article  CAS  Google Scholar 

  95. Xia DC, Zhou L, Qiao S, Zhang YL, Tang D, Liu J, Huang H, Liu Y, Kang ZH (2016) Graphene/Ni–Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Mater Res Bull 74:441–446. https://doi.org/10.1016/j.materresbull.2015.11.007

    Article  CAS  Google Scholar 

  96. Yang J, Zhu GX, Liu YJ, Xia JX, Ji ZY, Shen XP, Wu SK (2016) Fe3O4-Decorated Co9S8Nanoparticles in situ grown on reduced graphene oxide: a new and efficient electrocatalyst for oxygen evolution reaction. Adv Funct Mater 26:4712–4721. https://doi.org/10.1002/adfm.201600674

    Article  CAS  Google Scholar 

  97. Chen C, Tuo YX, Lu Q et al (2021) Hierarchical trimetallic Co–Ni–Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Appl Catal B: Environ 287:119953. https://doi.org/10.1016/j.apcatb.2021.119953

    Article  CAS  Google Scholar 

  98. Ma Y, Miao YJ, Mu GM, Lin DM, Xu CG, Zeng W, Xie FY (2021) Highly enhanced OER performance by Er-doped Fe–MOF nanoarray at large current densities. Nanomaterials 11:1847. https://doi.org/10.3390/nano11071847

    Article  CAS  Google Scholar 

  99. Xing JL, Guo KL, Zou ZH, Cai MM, Du J, Xu CL (2013) In-situ growth of well-ordered NiFe–MOF–74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation. Chem Comm 54:7046–7049. https://doi.org/10.1039/c8cc03112f

    Article  CAS  Google Scholar 

  100. Li FL, Wang PT, Huang XQ, Young DJ, Wang HF, Braunstein P, Lang JP (2019) Large-scalable, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew Chem Int Edit 131:7125–7130. https://doi.org/10.1002/anie.201902588

    Article  CAS  Google Scholar 

  101. Rui K, Zhao GQ, Chen YP, Lin Y, Zhou Q, Chen JY, Zhu JX, Sun WP, Huang W, Dou SX (2018) Hybrid 2D dual-metal–organic frameworks for enhanced water oxidation catalysis. Adv Funct Mater 28:1801554. https://doi.org/10.1002/adfm.201801554

    Article  CAS  Google Scholar 

  102. Liu H, Zha M, Liu Z, Tian JQ, Hu GZ, Feng LG (2020) Synergistically boosting oxygen evolution reaction of Fe–MOF by Ni doping and fluorination. Chem Comm 56:7889–7892. https://doi.org/10.1039/d0cc03422c

    Article  CAS  Google Scholar 

  103. Li F, Tian YH, Su SB, Wang CS, Li DS, Cai DD, Zhang SQ (2021) Theoretical and experimental exploration of tri-metallic organic frameworks (t-MOFs) for efficient electrocatalytic oxygen evolution reaction. Appl Catal B Environ 299:120665. https://doi.org/10.1016/j.apcatb.2021.120665

    Article  CAS  Google Scholar 

  104. Liu M, Kong LJ, Wang XM, He J, Bu XH (2019) Engineering bimetal synergistic electrocatalysts based on metal–organic frameworks for efficient oxygen evolution. Small 15:1903410. https://doi.org/10.1002/smll.201903410

    Article  CAS  Google Scholar 

  105. Zheng FQ, Zhang ZW, Xiang D, Li P, Du C, Zhuang ZH, Li XK, Chen W (2019) Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. J Colloid Interface Sci 555:541–547. https://doi.org/10.1016/j.jcis.2019.08.005

    Article  CAS  Google Scholar 

  106. Wang Z, Xu J, Yang JH, Xue YH, Dai LM (2022) Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chem Eng J 427:131498. https://doi.org/10.1016/j.cej.2021.131498

    Article  CAS  Google Scholar 

  107. Jamesh MI, Sun XM (2018) Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–A review. J Power Sources 400:31–68. https://doi.org/10.1016/j.jpowsour.2018.07.125

    Article  CAS  Google Scholar 

  108. Nejati K, Davari S, Akbari A, Asadpour-Zeynali K, Rezvani Z (2019) A highly active oxygen evolution electrocatalyst: Ni–Fe-layered double hydroxide intercalated with the molybdate and vanadate anions. Int J Hydrog Energy 44:14842–14852. https://doi.org/10.1016/j.ijhydene.2019.04.045

    Article  CAS  Google Scholar 

  109. Xuan CJ, Wang J, Xia WW, Peng ZK, Wu ZX, Lei W, Xia KD, Xin HL, Wang DL (2017) Porous structured Ni–Fe–P nanocubes derived from prussian blue analogue as electrocatalyst for efficient Ooverall water splitting. ACS Appl Mater Interfaces 9:26134–26142. https://doi.org/10.1021/acsami.7b08560

    Article  CAS  Google Scholar 

  110. Nai JW, Lu Y, Yu L, Wang X, Lou XW (2017) Formation of Ni–Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv Mater 29:1703870. https://doi.org/10.1002/adma.201703870

    Article  CAS  Google Scholar 

  111. Cai MY, Liu WJ, Luo X, Chen CH, Pan R, Zhang HJ, Zhong ML (2020) Three-dimensional and in situ-activated spinel oxide nanoporous clusters derived from stainless steel for efficient and durable water oxidation. ACS Appl Mater Interfaces 12:13971–13981. https://doi.org/10.1021/acsami.0c00701

    Article  CAS  Google Scholar 

  112. Huang WZ, Chen CX, Ling ZH, Li JT, Qu LB, Zhu JX, Yang W, Wang MM, Owusua KA, Qin L, Zhou L, Mai LQ (2020) Ni/Fe based bimetallic coordination complexes with rich active sites for efficient oxygen evolution reaction. Chem Eng J 405:126959. https://doi.org/10.1016/j.cej.2020.126959

    Article  CAS  Google Scholar 

  113. Ji L, Zheng H, Wei Y, Gong S, Wang T, Wang S, Chen Z (2021) Temperature-controlled fabrication of Co-Fe-based nanoframes for efficient oxygen evolution. Sci China Mater 65:431–441. https://doi.org/10.1007/s40843-021-1743-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping He.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

In this review, there are no experiments involving human tissue by an institutional review board or equivalent ethics committee. Written informed consent for publication of this paper was obtained from Southwest University of Science and Technology and all authors.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., He, P. A review on electrocatalysis for alkaline oxygen evolution reaction (OER) by Fe-based catalysts. J Mater Sci 58, 2041–2067 (2023). https://doi.org/10.1007/s10853-023-08176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08176-1

Navigation