Skip to main content

Advertisement

Log in

Boosting hydrogen production via urea electrolysis on an amorphous nickel phosphide/graphene hybrid structure

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Overall urea electrolysis has favorable thermodynamic properties and can complement traditional water splitting by simultaneously purifying urea-rich waste streams. However, the kinetics of the reaction is slow and more efficient catalysts are required. In this work, we describe a facile way to fabricate amorphous nickel phosphides on graphene nanosheets (a-Ni2P/G), which shows high efficient performance for overall urea electrolysis. The a-Ni2P/G catalyst has abundant surface area for abundant catalytic active sites and high proportion of Ni3+ active sites, realizing a superior intrinsic activity for both hydrogen evolution reaction (HER) and urea oxidation reaction (UOR). Impressively, the a-Ni2P/G catalyst requires only much lower potentials of 1.28 V and − 0.1 V for UOR and HER at 10 mA cm−2. The assembled a-Ni2P/G║a-Ni2P/G electrolyzer needs a small cell voltage of 1.39 V to deliver the current density of 10 mA cm−2. This work highlights a promising pathway to develop a cost-efficient catalyst for energy-saving H2 generation combined with waste water purification.

Graphical abstract

A highly efficient amorphous catalyst of a-Ni2P/G with high surface area and abundant exposed catalytic sites is reported. The assembled a-Ni2P/G║a-Ni2P/G system shows a quite small cell voltage of 1.39 V to deliver 10 mA cm−2, which is better than most of bifunctional catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ormerod RM (2003) Solid oxide fuel cells. Chem Soc Rev 32:17–28

    Article  CAS  Google Scholar 

  2. Mallouk TE (2013) Divide and conquer. Nat Chem 5:362–363

    Article  CAS  Google Scholar 

  3. Senthilkumar N, Gnana Kumar G, Manthiram A (2018) 3D hierarchical core–shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells. Adv Energy Mater 8:1702207

    Article  CAS  Google Scholar 

  4. Boggs BK, King RL, Botte GG (2009) Urea electrolysis: direct hydrogen production from urine. Chem Commun 32:4859–4861

    Article  CAS  Google Scholar 

  5. Lan R, Tao S, Irvine JTS (2010) A direct urea fuel cell—power from fertiliser and waste. Energy Environ Sci 3:438–441

    Article  CAS  Google Scholar 

  6. Tong Y, Mao H, Xu Y, Liu J (2019) Oxygen vacancies confined in Co3O4 quantum dots for promoting oxygen evolution electrocatalysis. Inorg Chem Front 6:2055–2060

    Article  CAS  Google Scholar 

  7. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365

    Article  CAS  Google Scholar 

  8. Tong Y, Mao H, Chen P, Sun Q, Yan F, Xi F (2020) Confinement of fluorine anions in nickel-based catalysts for greatly enhancing oxygen evolution activity. Chem Commun 56:4196–4199

    Article  CAS  Google Scholar 

  9. Wang C, Lu H, Mao Z, Yan C, Shen G, Wang X (2020) Bimetal Schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis. Adv Funct Mater 30:2000556

    Article  CAS  Google Scholar 

  10. Zhu B, Liang Z, Zou R (2020) Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 16:1906133

    Article  CAS  Google Scholar 

  11. Tong Y, Chen P, Zhang M, Zhou T, Zhang L, Chu W, Wu C, Xie Y (2018) Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal 8:1–7

    Article  CAS  Google Scholar 

  12. Yu Z-Y, Lang C-C, Gao M-R, Chen Y, Fu Q-Q, Duan Y, Yu S-H (2018) Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ Sci 11:1890–1897

    Article  CAS  Google Scholar 

  13. Chen S, Duan J, Vasileff A, Qiao SZ (2016) Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion. Angew Chemie Int Ed 55:3804–3808

    Article  CAS  Google Scholar 

  14. Li F, Chen J, Zhang D, Fu W-F, Chen Y, Wen Z, Lv X-J (2018) Heteroporous MoS2/Ni3S2 towards superior electrocatalytic overall urea splitting. Chem Commun 54:5181–5184

    Article  CAS  Google Scholar 

  15. Zhu W, Ren M, Hu N, Zhang W, Luo Z, Wang R, Wang J, Huang L, Suo Y, Wang J (2018) Traditional NiCo2S4 phase with porous nanosheets array topology on carbon cloth: a flexible, versatile and fabulous electrocatalyst for overall water and urea electrolysis. ACS Sustain Chem Eng 6:5011–5020

    Article  CAS  Google Scholar 

  16. Wang L, Ren L, Wang X, Feng X, Zhou J, Wang B (2018) Multivariate MOF-templated pomegranate-like Ni/C as efficient bifunctional electrocatalyst for hydrogen evolution and urea oxidation. ACS Appl Mater Interfaces 10:4750–4756

    Article  CAS  Google Scholar 

  17. Li Y, Tan X, Chen S, Bo X, Ren H, Smith SC, Zhao C (2019) Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution. Angew Chemie Int Ed 58:461–466

    Article  CAS  Google Scholar 

  18. Wang T, Wang M, Yang H, Xu M, Zuo C, Feng K, Xie M, Deng J, Zhong J, Zhou W et al (2019) Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ Sci 12:3522–3529

    Article  CAS  Google Scholar 

  19. Tong Y, Wu J, Chen P, Liu H, Chu W, Wu C, Xie Y (2018) Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution. J Am Chem Soc 140:11165–11169

    Article  CAS  Google Scholar 

  20. Daramola DA, Singh D, Botte GG (2010) Dissociation rates of urea in the presence of NiOOH catalyst: a DFT analysis. J Phys Chem A 114:11513–11521

    Article  CAS  Google Scholar 

  21. Shen F, Jiang W, Qian G, Chen W, Zhang H, Luo L, Yin S (2020) Strongly coupled carbon encapsulated Ni-WO2 hybrids as efficient catalysts for water-to-hydrogen conversion via urea electro-oxidation. J Power Sources 458:228014

    Article  CAS  Google Scholar 

  22. Xu Q, Qian G, Yin S, Yu C, Chen W, Yu T, Luo L, Xia Y, Tsiakaras P (2020) Design and synthesis of highly performing bifunctional Ni-NiO-MoNi hybrid catalysts for enhanced urea oxidation and hydrogen evolution reactions. ACS Sustain Chem Eng 8:7174–7181

    Article  CAS  Google Scholar 

  23. Wang D, Lu J, Luo L, Jing S, Abbo HS, Titinchi SJJ, Chen Z, Tsiakaras P, Yin S (2019) Enhanced hydrogen evolution activity over microwave-assisted functionalized 3D structured graphene anchoring FeP nanoparticles. Electrochim Acta 317:242–249

    Article  CAS  Google Scholar 

  24. Chen W, Qian G, Xu Q, Pan M, Luo L, Yin S (2021) Nitrogen-doped-carbon coated FeCo modified CoFe2O4 nanoflowers heterostructure with robust stability for oxygen evolution and urea oxidation. Electrochim Acta 371:137817

    Article  CAS  Google Scholar 

  25. Qian G, Chen J, Luo L, Zhang H, Chen W, Gao Z, Yin S, Tsiakaras P (2020) Novel bifunctional V2O3 nanosheets coupled with N-doped-carbon encapsulated Ni heterostructure for enhanced electrocatalytic oxidation of urea-rich wastewater. ACS Appl Mater Interfaces 12:38061–38069

    Article  CAS  Google Scholar 

  26. Wu F, Zhang Z, Zhang F, Duan D, Li Y, Wei G, Liu S, Yuan Q, Wang E, Hao X (2018) Exploring the role of cobalt in promoting the electroactivity of amorphous Ni-B nanoparticles toward methanol oxidation. Electrochim Acta 287:115–123

    Article  CAS  Google Scholar 

  27. Xie J, Qu H, Lei F, Peng X, Liu W, Gao L, Hao P, Cui G, Tang B (2018) Partially amorphous nickel-iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis. J Mater Chem A 6:16121–16129

    Article  CAS  Google Scholar 

  28. Zhang H, Chen B, Jiang H, Duan X, Zhu Y, Li C (2018) Boosting water oxidation electrocatalysts with surface engineered amorphous cobalt hydroxide nanoflakes. Nanoscale 10:12991–12996

    Article  CAS  Google Scholar 

  29. Zhang LY, Ouyang Y, Wang S, Wu D, Jiang M, Wang F, Yuan W, Li CM (2019) Perforated Pd nanosheets with crystalline/amorphous heterostructures as a highly active robust catalyst toward formic acid oxidation. Small 15:1904245

    Article  CAS  Google Scholar 

  30. Nakamura N, Terban MW, Billinge SJL, Reeja-Jayan B (2017) Unlocking the structure of mixed amorphous-crystalline ceramic oxide films synthesized under low temperature electromagnetic excitation. J Mater Chem A 5:18434–18441

    Article  CAS  Google Scholar 

  31. Yu J, Pan S, Zhang Y, Liu Q, Li B (2019) Facile synthesis of monodispersed α-Ni(OH)2 microspheres assembled by ultrathin nanosheets and its performance for oxygen evolution reduction. Front Mater 6:124

    Article  Google Scholar 

  32. Feng Y, Xu C, Hu E, Xia B, Ning J, Zheng C, Zhong Y, Zhang Z, Hu Y (2018) Construction of hierarchical FeP/Ni2P hollow nanospindles for efficient oxygen evolution. J Mater Chem A 6:14103–14111

    Article  CAS  Google Scholar 

  33. Li Y, Zhang H, Jiang M, Zhang Q, He P, Sun X (2017) 3D Self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv Funct Mater 27:1702513

    Article  CAS  Google Scholar 

  34. Huang Z, Chen Z, Chen Z, Lv C, Meng H, Zhang C (2014) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8:8121–8129

    Article  CAS  Google Scholar 

  35. Yao Q, Zhou X, Xiao S, Chen J, Abdelhafeez IA, Yu Z, Chu H, Zhang Y (2019) Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination. Water Res 165:114930

    Article  CAS  Google Scholar 

  36. Morales C, Urbanos FJ, del Campo A, Leinen D, Granados D, Rodríguez MA, Soriano L (2020) Electronic decoupling of graphene from copper induced by deposition of ZnO: A complex substrate/graphene/deposit/environment interaction. Adv Mater Interfaces 7:1902062

    Article  CAS  Google Scholar 

  37. Moon J-S, Jang J-H, Kim E-G, Chung Y-H, Yoo SJ, Lee Y-K (2015) The nature of active sites of Ni2P electrocatalyst for hydrogen evolution reaction. J Catal 326:92–99

    Article  CAS  Google Scholar 

  38. Chen N, Du Y-X, Zhang G, Lu W-T, Cao F-F (2021) Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media. Nano Energy 81:105605

    Article  CAS  Google Scholar 

  39. Liu Y-H, Hung C-H, Hsu C-L (2021) Electrochemical fabrication of carbon fiber-based nickel hydroxide/carbon nanotube composite electrodes for improved electro-oxidation of the urea present in alkaline solutions. Sep Purif Technol 258:118002

    Article  CAS  Google Scholar 

  40. Guo F, Ye K, Du M, Huang X, Cheng K, Wang G, Cao D (2016) Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium. Electrochim Acta 210:474–482

    Article  CAS  Google Scholar 

  41. Liu H, Zhu S, Cui Z, Li Z, Wu S, Liang Y (2021) Ni2P Nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism. Nanoscale 13:1759–1769

    Article  CAS  Google Scholar 

  42. Li Y, Jiang H, Cui Z, Zhu S, Li Z, Wu S, Ma L, Han X, Liang Y (2021) Spin state tuning of the octahedral sites in Ni–Co-based spinel toward highly efficient urea oxidation reaction. J Phys Chem C 125:9190–9199

    Article  CAS  Google Scholar 

  43. Xia J, Dhaka K, Volokh M, Peng G, Wu Z, Fu Y, Caspary Toroker M, Wang X, Shalom M (2019) Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction. Sustain Energy Fuels 3:2006–2014

    Article  CAS  Google Scholar 

  44. Chakrabarty S, Offen-Polak I, Burshtein TY, Farber EM, Kornblum L, Eisenberg D (2021) Urea oxidation electrocatalysis on nickel hydroxide: the role of disorder. J Solid State Electrochem 25:159–171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21905251) and the Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant No. 18062242-Y. Y. Tong is also partially supported by a fellowship from the China Scholarship Council (CSC) and the Swiss Government Excellence Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Tong or Zhaofu Fei.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 1861 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Y., Chen, L., Dyson, P.J. et al. Boosting hydrogen production via urea electrolysis on an amorphous nickel phosphide/graphene hybrid structure. J Mater Sci 56, 17709–17720 (2021). https://doi.org/10.1007/s10853-021-06391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06391-2

Navigation