Skip to main content
Log in

Synergism of electronic modulation and geometric architecture: bimetallic phosphide heterostructure on nickel foam for efficient water splitting

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In the field of efficient and clean energy, significant challenges remain in constructing highly active bifunctional electrodes for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, two high-performance bifunctional electrodes with brush-like and wire-like cobalt/nickel phosphide heterostructure nanoarrays supported on nickel foam are constructed using a surface/interface reconstruction strategy, termed b-CoP/Ni2P/NF, and w-CoP/Ni2P/NF, respectively. The unique morphological configuration and rich heterostructure interface effectively accelerate the transformation of electrons and protons, exposing ultra-high active sites and carrier mobility. As a result, b-CoP/Ni2P/NF, with its stronger proton/electron removal/insertion ability and higher conductivity, demonstrates remarkable electrocatalytic activity and kinetics in OER/HER processes. Moreover, the density functional theory calculations reveal that designing the construction of high-index surface heterojunctions can significantly optimize hydrogen adsorption energy in HER and reduce the intermediate (O* → OOH*) conversion barrier in OER. In practical applications, the b-CoP/Ni2P/NF achieves a very low overpotential and excellent stability in alkaline double-electrode full-cell water-splitting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data used in this work are available from the corresponding author on reasonable request.

References

  1. Wang TH, Tao L, Zhu XR, Chen C, Chen W, Du SQ, Zhou YY, Zhou B, Wang DD, Xie C, Long P, Li W, Wang YY, Chen R, Zou YQ, Fu XZ, Li YF, Duan XF, Wang SY (2022) Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat Catal 5:66–73. https://doi.org/10.1038/s41929-021-00721-y

    Article  CAS  Google Scholar 

  2. Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P (2021) Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem Rev 121:10367–10451. https://doi.org/10.1021/acs.chemrev.1c00121

    Article  CAS  PubMed  Google Scholar 

  3. Karimi-Maleh H, Orooji Y, Karimi F, Karaman C, Vasseghian Y, Dragoi EN, Karaman O (2023) Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy. Adv Compos Hybrid Mater 6:29. https://doi.org/10.1007/s42114-022-00597-x

    Article  CAS  Google Scholar 

  4. Wu HB, Xia BY, Yu L, Yu XY, Lou XW (2015) Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun 6:6512. https://doi.org/10.1038/ncomms7512

    Article  CAS  PubMed  Google Scholar 

  5. Hamukwaya SL, Zhao ZY, Hao HY, Abo-Dief HM, Abualnaja KM, Alanazi AK, Mashingaidze MM, El-Bahy SM, Huang M, Guo ZH (2022) Enhanced photocatalytic performance for hydrogen production and carbon dioxide reduction by a mesoporous single-crystal-like TiO2 composite catalyst. Adv Compos Hybrid Mater 5:2620–2630. https://doi.org/10.1007/s42114-022-00545-9

    Article  CAS  Google Scholar 

  6. Wismann ST, Engbæk JS, Vendelbo SB, Bendixen FB, Eriksen WL, Aasberg-Petersen K, Frandsen C, Chorkendorff I, Mortensen PM (2019) Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364:756–759. https://doi.org/10.1126/science.aaw8775

    Article  CAS  PubMed  Google Scholar 

  7. Chen K, Kim GC, Kim CY, Yadav S, Lee IH (2024) Engineering core-shell hollow-sphere Fe3O4@FeP@nitrogen-doped-carbon as an advanced bi-functional electrocatalyst for highly-efficient water splitting. J Colloid Interf Sci 657:684–694. https://doi.org/10.1016/j.jcis.2023.11.184

    Article  CAS  Google Scholar 

  8. Zhao ZB, Lin Y, Wu JB, Li J, Lei M (2022) Mixed-phase cobalt-based nanosheets prepared by rapid thermal annealing for oxygen evolution catalysis. Adv Compos Hybrid Mater 5:2589–2600. https://doi.org/10.1007/s42114-022-00537-9

    Article  CAS  Google Scholar 

  9. Eqi ML, Shi C, Xie JJ, Kang FY, Qi HJ, Tan XS, Huang ZH, Liu JL, Guo J (2023) Synergetic effect of Ni-Au bimetal nanoparticles on urchin-like TiO2 for hydrogen and arabinose co-production by glucose photoreforming. Adv Compos Hybrid Mater 6:5. https://doi.org/10.1007/s42114-022-00580-6

    Article  CAS  Google Scholar 

  10. Hamukwaya SL, Zhao ZY, Hao HY, Abo-Dief HM, Abualnaja KM, Alanazi AK, Mashingaidze MM, El-Bahy SM, Huang MN, Guo ZH (2023) Enhanced photocatalytic performance for hydrogen production and carbon dioxide reduction by a mesoporous single-crystal-like TiO2 composite catalyst. Adv Compos Hybrid Mater 5:2620–2630. https://doi.org/10.1007/s42114-022-00545-9

    Article  CAS  Google Scholar 

  11. Feng Y, Li YC, Almalki ASA, Meng XN, Alhadhrami A, Ye XM, Ibrahim MM, Guo X, Algadi H, Huang MN, Winchester W, Wang Z (2022) Synthesis and characterization of poly(butanediol sebacate-butanediol) terephthalate (PBSeT) reinforced by hydrogen bond containing amide group, with good mechanical properties and improved water vapor barrier. Adv Compos Hybrid Mater 5:2051–2065. https://doi.org/10.1007/s42114-022-00542-y

    Article  CAS  Google Scholar 

  12. Wang JS, Zhang ZF, Song HR, Zhang B, Liu J, Shai XX, Miao L (2021) Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv Funct Mater 31:2008578. https://doi.org/10.1002/adfm.202008578

    Article  CAS  Google Scholar 

  13. Liu P, Chen B, Liang CW, Yao WT, Cui YZ, Hu SY, Zou PC, Zhang H, Fan HJ, Yang C (2021) Tip-enhanced electric field: a new mechanism promoting mass transfer in oxygen evolution reactions. Adv Mater 33:2007377. https://doi.org/10.1002/adma.202007377

    Article  CAS  Google Scholar 

  14. Li SS, Gao YQ, Li N, Ge L, Bu XH, Feng PY (2021) Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ Sci 14:1897–1927. https://doi.org/10.1039/d0ee03697h

    Article  CAS  Google Scholar 

  15. Yu J, Dai YW, Wu XH, Zhang ZB, He QJ, Cheng C, Wu Z, Shao ZP, Ni M (2021) Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. Chem Eng J 417:128105. https://doi.org/10.1016/j.cej.2020.128105

    Article  CAS  Google Scholar 

  16. Jeong S, Hu KL, Ohto T, Nagata Y, Masuda H, Fujita JI, Ito Y (2020) Effect of graphene encapsulation of NiMo alloys on oxygen evolution reaction. ACS Catal 10:792–799. https://doi.org/10.1021/acscatal.9b04134

    Article  CAS  Google Scholar 

  17. Yang H, Han XT, Douka AI, Huang L, Gong LQ, Xia CF, Park HS, Xia BY (2021) Advanced oxygen electrocatalysis in energy conversion and storage. Adv Funct Mater 31:2007602. https://doi.org/10.1002/adfm.202007602

    Article  CAS  Google Scholar 

  18. Li HD, Lai JP, Li ZJ, Wang L (2021) Multi-sites electrocatalysis in high-entropy alloys. Adv Funct Mater 31:2106715. https://doi.org/10.1002/adfm.202106715

    Article  CAS  Google Scholar 

  19. Dong DQ, Wu ZX, Wang J, Fu GT, Tang YW (2019) Recent progress in Co9S8-based materials for hydrogen and oxygen electrocatalysis. J Mater Chem A 7:16068–16088. https://doi.org/10.1039/c9ta04972j

    Article  CAS  Google Scholar 

  20. Chen ZJ, Zheng RJ, Zou WS, Wei WF, Li J, Wei W, Ni BJ, Chen H (2021) Integrating high-efficiency oxygen evolution catalysts featuring accelerated surface reconstruction from waste printed circuit boards via a boriding recycling strategy. Appl Catal B Environ 298:120583. https://doi.org/10.1016/j.apcatb.2021.120583

    Article  CAS  Google Scholar 

  21. Li XN, Yang XF, Huang YQ, Zhang T, Liu B (2019) Supported noble-metal single atoms for heterogeneous catalysis. Adv Mater 31:1902031. https://doi.org/10.1002/adma.201902031

    Article  CAS  Google Scholar 

  22. Luo YT, Zhang ZY, Chhowalla M, Liu BL (2022) Recent advances in design of electrocatalysts for high-current-density water splitting. Adv Mater 34:2108133. https://doi.org/10.1002/adma.202108133

    Article  CAS  Google Scholar 

  23. Zhang YK, Lin YX, Duan T, Song L (2021) Interfacial engineering of heterogeneous catalysts for electrocatalysis. Mater Today 48:115–134. https://doi.org/10.1016/j.mattod.2021.02.004

    Article  CAS  Google Scholar 

  24. Tao L, Wang YQ, Zou YQ, Zhang NN, Zhang YQ, Wu YJ, Wang YY, Chen R, Wang SY (2020) Charge transfer modulated activity of carbon-based electrocatalysts. Adv Energy Mater 10:1901227. https://doi.org/10.1002/aenm.201901227

    Article  CAS  Google Scholar 

  25. Xu H, Shang HY, Wang C, Jin LJ, Chen CY, Wang CY, Du YK (2020) Three-dimensional open CoMoOx/CoMoSx/CoSx nanobox electrocatalysts for efficient oxygen evolution reaction. Appl Catal B Environ 265:118605. https://doi.org/10.1016/j.apcatb.2020.118605

    Article  CAS  Google Scholar 

  26. Yuan ZK, Li J, Yang MJ, Fang ZS, Jian JH, Yu DS, Chen XD, Dai LM (2019) Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J Am Chem Soc 141:4972–4979. https://doi.org/10.1021/jacs.9b00154

    Article  CAS  PubMed  Google Scholar 

  27. Balogun MS, Huang YC, Qiu WT, Yang H, Ji HB, Tong YX (2017) Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater Today 20:425–451. https://doi.org/10.1016/j.mattod.2017.03.019

    Article  CAS  Google Scholar 

  28. Sun YQ, Zhang T, Li CC, Xu K, Li Y (2020) Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. J Mater Chem A 8:13415–13436. https://doi.org/10.1039/d0ta05038e

    Article  CAS  Google Scholar 

  29. Diao JX, Qiu Y, Liu SQ, Wang WT, Chen K, Li HL, Yuan WY, Qu YT, Guo XH (2020) Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv Mater 32:1905679. https://doi.org/10.1002/adma.201905679

    Article  CAS  Google Scholar 

  30. Zhang X, Yang P, Jiang SP (2021) Ni clusters-derived 2D/2D layered WOx(MoS2)/Ni-g-C3N4 step-scheme heterojunctions with enhanced photo- and electro-catalytic performance. J Power Sources 510:230420. https://doi.org/10.1016/j.jpowsour.2021.230420

    Article  CAS  Google Scholar 

  31. Sun YQ, Wu Q, Shi GQ (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132. https://doi.org/10.1039/c0ee00683a

    Article  CAS  Google Scholar 

  32. Wu YZ, Zhao XW, Shang YY, Chang SL, Dai LX, Cao AY (2021) Application-driven carbon nanotube functional materials. ACS Nano 15:7946–7974. https://doi.org/10.1021/acsnano.0c10662

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Zhou Q, Zhu JX, Yan QY, Dou SX, Sun WP (2017) Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv Funct Mater 27:1702317. https://doi.org/10.1002/adfm.201702317

    Article  CAS  Google Scholar 

  34. Wang WJ, Zhou TP, Zhang K, Wang C, Shi X, Wang L, Liu QH, Wang Y, Jiao QY, Ma GX, Ye C, Xie Y, Wu XJ, Chu WS, Wu CZ (2022) Sulfur-induced dynamic reconstruction of iron-nitrogen species for highly active neutral oxygen reduction reactions. Sci China Chem 12:2476–2486. https://doi.org/10.1007/s11426-022-1384-1

    Article  CAS  Google Scholar 

  35. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys Rev B 59:7413–7421. https://doi.org/10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  36. Tinte S, Stachiotti MG, Rodriguez CO, Novikov DL, Christensen NE (1998) Applications of the generalized gradient approximation to ferroelectric perovskites. Phys Rev B 58:11959–11963. https://doi.org/10.1103/PhysRevB.58.11959

    Article  CAS  Google Scholar 

  37. Ding X, Liu HL, Chen JY, Wen MC, Li GY, An TC, Zhao HJ (2020) In situ growth of well-aligned Ni-MOF nanosheets on nickel foam for enhanced photocatalytic degradation of typical volatile organic compounds. Nanoscale 12:9462–9470. https://doi.org/10.1039/D0NR01027H

    Article  CAS  PubMed  Google Scholar 

  38. Zhang YQ, Liu HB, Ge RY, Yang J, Li SA, Liu Y, Feng LY, Li Y, Zhu MY, Li WX (2022) Mo-induced in-situ architecture of NixCoyP/Co2P heterostructure nano-networks on nickel foam as bifunctional electrocatalysts for overall water splitting. Sustain Mater Technol 33:e00461. https://doi.org/10.1016/j.susmat.2022.e00461

    Article  CAS  Google Scholar 

  39. Guo J, Qian H, Liu PF, Ma JY (2019) Fabrication of durability superhydrophobic LDH coating on zinc sheet surface via NH4F-assisted in-situ growth and post-modification for enhancing anti-corrosion and anti-icing. Appl Clay Sci 180:105182. https://doi.org/10.1016/j.clay.2019.105182

    Article  CAS  Google Scholar 

  40. Cheng L, Xu M, Zhang QS, Li GC, Chen JX, Lou YB (2019) NH4F assisted and morphology-controlled fabrication of ZnCo2O4 nanostructures on Ni-foam for enhanced energy storage devices. J Alloy Compd 781:245–254. https://doi.org/10.1016/j.jallcom.2018.11.402

    Article  CAS  Google Scholar 

  41. Butburee T, Bai Y, Wang HJ, Chen HJ, Wang ZL, Liu G, Zou J, Khemthong P, Lu GQM, Wang LZ (2018) 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance. Adv Mater 30:1705666. https://doi.org/10.1002/adma.201705666

    Article  CAS  Google Scholar 

  42. Che QJ, Li Q, Tan Y, Chen XH, Xu X, Chen YS (2019) One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl Catal B Environ 246:337–348. https://doi.org/10.1016/j.apcatb.2019.01.082

    Article  CAS  Google Scholar 

  43. Mavis B, Akinc M (2004) Three-component layer double hydroxides by urea precipitation: structural stability and electrochemistry. J Power Sources 134:308–317. https://doi.org/10.1016/j.jpowsour.2004.03.056

    Article  CAS  Google Scholar 

  44. Okamoto K, Iyi N, Sasaki T (2007) Factors affecting the crystal size of the MgAl-LDH (layered double hydroxide) prepared by using ammonia-releasing reagents. Appl Clay Sci 37(1–2):23–31. https://doi.org/10.1016/j.clay.2006.10.008

    Article  CAS  Google Scholar 

  45. Zhao TW, Shen XJ, Wang Y, Hocking RK, Li YB, Rong CL, Dastafkan K, Su Z, Zhao C (2021) In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation. Adv Funct Mater 31:2100614. https://doi.org/10.1002/adfm.202100614

    Article  CAS  Google Scholar 

  46. Shen ZK, Cheng M, Yuan YJ, Pei L, Zhong JS, Guan J, Li XY, Li ZJ, Bao L, Zhang XF, Yu ZT, Zou ZG (2021) Identifying the role of interface chemical bonds in activating charge transfer for enhanced photocatalytic nitrogen fixation of Ni2P-black phosphorus photocatalysts. Appl Catal B Environ 295:120274. https://doi.org/10.1016/j.apcatb.2021.120274

    Article  CAS  Google Scholar 

  47. Zhu CQ, Zhao SF, Fan ZW, Wu HD, Liu FQ, Chen ZX, Li AM (2020) Confinement of CoP nanoparticles in nitrogen-doped yolk-shell porous carbon polyhedron for ultrafast catalytic oxidation. Adv Funct Mater 30:2003947. https://doi.org/10.1002/adfm.202003947

    Article  CAS  Google Scholar 

  48. Song HQ, Wu M, Tang ZY, Tse JS, Yang B, Lu SY (2021) Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew Chem Int Ed 60:7234–7244. https://doi.org/10.1002/anie.202017102

    Article  CAS  Google Scholar 

  49. Mu Q, Liu RL, Kimura H, Li JC, Jiang HY, Zhang XY, Yu ZP, Sun XQ, Algadi H, Guo ZH, Du W, Hou CX (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6:23. https://doi.org/10.1007/s42114-022-00607-y

    Article  CAS  Google Scholar 

  50. Yang WY, Peng DN, Kimura H, Zhang XY, Sun XQ, Pashameah RA, Alzahrani E, Wang B, Guo ZH, Du W, Hou CX (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157. https://doi.org/10.1007/s42114-022-00556-6

    Article  CAS  Google Scholar 

  51. Li FS, Bi ZY, Kimura H, Li HY, Liu LY, Xie XB, Zhang XY, Wang J, Sun XQ, Ma ZJ, Du W, Hou CX (2023) Energy- and cost-efficient salt-assisted synthesis of nitrogen-doped porous carbon matrix decorated with nickel nanoparticles for superior electromagnetic wave absorption. Adv Compos Hybrid Mater 6:133. https://doi.org/10.1007/s42114-023-00710-8

    Article  CAS  Google Scholar 

  52. Li FS, Li QY, Kimura H, Xie XB, Zhang XY, Wu NN, Sun XQ, Xu BB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li HD, Du W, Guo ZH, Hou CX (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  CAS  Google Scholar 

  53. Hou CX, Yang WY, Kimura H, Xie XB, Zhang XY, Sun XQ, Yu ZP, Yang XY, Zhang YP, Wang B, Xu BB, Sridhar D, Algadi H, Guo ZH, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  CAS  Google Scholar 

  54. Hou CX, Li FS, Kimura H, Li QY, Liu LY, Chu QQ, Wu JM, Fan GH, Du W (2023) Sodium chloride assisted synthesis of porous magnetic carbon nanocomposites containing cobalt nanoparticles for high-performance electromagnetic wave-absorption. J Mater Res Technol 25:5148–5158. https://doi.org/10.1016/j.jmrt.2023.07.010

    Article  CAS  Google Scholar 

  55. Cheng M, Fan HS, Song YJ, Cui YM, Wang RM (2017) Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors. Dalton Trans 46:9201–9209. https://doi.org/10.1039/c7dt01289f

    Article  CAS  PubMed  Google Scholar 

  56. Ding XD, Huang HT, Wan Q, Guan X, Fang YX, Lin S, Chen DY, Xie ZL (2021) Self-template synthesis of hollow Fe-doped CoP prisms with enhanced oxygen evolution reaction activity. J Energy Chem 62:415–422. https://doi.org/10.1016/j.jechem.2021.04.001

    Article  CAS  Google Scholar 

  57. Bao JH, Zhou YM, Zhang YW, Sheng XL, Wang YY, Liang S, Guo C, Yang W, Zhuang T, Hu YJ (2020) Engineering water splitting sites in three-dimensional flower-like Co-Ni-P/MoS2 heterostructural hybrid spheres for accelerating electrocatalytic oxygen and hydrogen evolution. J Mater Chem A 8:22181–22190. https://doi.org/10.1039/D0TA07953G

    Article  CAS  Google Scholar 

  58. Nguyen DC, Tran DT, Doan TLL, Kim DH, Kim NH, Lee JH (2020) Rational design of core@shell structured CoSx@Cu2MoS4 hybridized MoS2/N, S-codoped graphene as advanced electrocatalyst for water splitting and Zn-air battery. Adv Energy Mater 10:1903289. https://doi.org/10.1002/aenm.201903289

    Article  CAS  Google Scholar 

  59. Kim SO, Manthiram A (2016) The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode. Chem Commun 52:4337–4340. https://doi.org/10.1039/c5cc10585d

    Article  CAS  Google Scholar 

  60. Boppella R, Tan JW, Yang W, Moon J (2019) Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv Funct Mater 29:1807976. https://doi.org/10.1002/adfm.201807976

    Article  CAS  Google Scholar 

  61. Tran DT, Le HT, Hoa VH, Kim NH, Lee JH (2021) Dual-coupling ultrasmall iron-Ni2P into P-doped porous carbon sheets assembled CuxS nanobrush arrays for overall water splitting. Nano Energy 84:105861. https://doi.org/10.1016/j.nanoen.2021.105861

    Article  CAS  Google Scholar 

  62. Yang YM, Ji YJ, Li GY, Li YY, Jia BH, Yan JQ, Ma TY, Liu SZ (2021) IrOx@In2O3 heterojunction from individually crystallized oxides for weak-light-promoted electrocatalytic water oxidation. Angew Chem 133:26994–27001. https://doi.org/10.1002/ange.202112042

    Article  Google Scholar 

  63. Tian JQ, Chen J, Liu JY, Tian QH, Chen P (2018) Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy 48:284–291. https://doi.org/10.1016/j.nanoen.2018.03.063

    Article  CAS  Google Scholar 

  64. Yu J, Cao Q, Li YB, Long X, Yang SH, Clark JK, Nakabayashi M, Shibata N, Delaunay JJ (2019) Defect-rich NiCeOx electrocatalyst with ultrahigh stability and low overpotential for water oxidation. ACS Catal 9:1605–1611. https://doi.org/10.1021/acscatal.9b00191

    Article  CAS  Google Scholar 

  65. Riyajuddin S, Azmi K, Pahuja M, Kumar S, Maruyama T, Bera C, Ghosh K (2021) Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 15:5586–5599. https://doi.org/10.1021/acsnano.1c00647

    Article  CAS  PubMed  Google Scholar 

  66. Fan LZ, Zhang PL, Zhang BB, Daniel Q, Timmer BJJ, Zhang FG, Sun LC (2018) 3D core-shell NiFeCr catalyst on a Cu nanoarray for water oxidation: synergy between structural and electronic modulation. ACS Energy Lett 3:2865–2874. https://doi.org/10.1021/acsenergylett.8b01897

    Article  CAS  Google Scholar 

  67. Ge K, Sun SJ, Zhao Y, Yang K, Wang S, Zhang ZH, Cao JY, Yang YF, Zhang Y, Pan MW, Zhu L (2021) Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew Chem 133:12204–12209. https://doi.org/10.1002/anie.202102632

    Article  CAS  Google Scholar 

  68. Yan LT, Cao L, Dai PC, Gu X, Liu DD, Li LJ, Wang Y, Zhao XB (2017) Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv Funct Mater 27:1703455. https://doi.org/10.1002/adfm.201703455

    Article  CAS  Google Scholar 

  69. Liu R, Wang YY, Liu DD, Zou YQ, Wang SY (2017) Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv Mater 29:1701546. https://doi.org/10.1002/adma.201701546

    Article  CAS  Google Scholar 

  70. Li GW, Yang Q, Rao JC, Fu CG, Liou SC, Auffermann G, Sun Y, Felser C (2020) In situ induction of strain in iron phosphide (FeP2) catalyst for enhanced hydroxide adsorption and water oxidation. Adv Funct Mater 30:1907791. https://doi.org/10.1002/adfm.201907791

    Article  CAS  Google Scholar 

  71. Zhang HT, Guo HR, Ren JK, Jin XT, Li XP, Song R (2021) Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction. Chem Eng J 426:131300. https://doi.org/10.1016/j.cej.2021.131300

    Article  CAS  Google Scholar 

  72. Zhang Q, Xiao W, Guo WH, Yang YX, Lei JL, Luo HQ, Li NB (2021) Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv Funct Mater 31:2102117. https://doi.org/10.1002/adfm.202102117

    Article  CAS  Google Scholar 

  73. Wang L, Nitopi S, Wong AB, Snider JL, Nielander AC, Morales-Guio CG, Orazov M, Higgins DC, Hahn C, Jaramillo TF (2019) Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat Catal 2:702–708. https://doi.org/10.1038/s41929-019-0301-z

    Article  CAS  Google Scholar 

  74. Anantharaj S, Ede SR, Karthick K, Sankar SS, Sangeetha K, Karthik PE, Kundu S (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci 11:744–771. https://doi.org/10.1039/c7ee03457a

    Article  CAS  Google Scholar 

  75. Upale P, Verma S, Ogale SB (2023) Superior oxygen evolution reaction performance of NiCoFe spinel oxide nanowires in situ grown on β-Ni(OH)2 nanosheet-decorated Ni foam: case studies on stoichiometric and off-stoichiometric oxides. J Mater Chem A 11:8972–8987. https://doi.org/10.1039/d2ta08994g

    Article  CAS  Google Scholar 

  76. Chen K, Cao YH, Wang WM, Diao JX, Park J, Dao VD, Kim GC, Qu YT, Lee IH (2023) Effectively enhanced activity for overall water splitting through interfacially strong P-Co-O tetrahedral coupling interaction on CoO/CoP heterostructure hollow-nanoneedles. J Mater Chem A 11:3136–3147. https://doi.org/10.1039/d2ta08870c

    Article  CAS  Google Scholar 

  77. Zhan K, Feng CH, Feng XT, Zhao D, Yue S, Li YJ, Jiao QZ, Li HS, Zhao Y (2020) Iron-doped nickel cobalt phosphide nanoarrays with urchin-like structures as high-performance electrocatalysts for oxygen evolution reaction. ACS Sustainable Chem Eng 8:6273–6281. https://doi.org/10.1021/acssuschemeng.9b07781

    Article  CAS  Google Scholar 

  78. Wang Y, Sun LZ, Lu LG, Xu DG, Hao QL, Liu B (2021) A sequential template strategy toward hierarchical hetero-metal phosphide hollow nanoboxes for electrocatalytic oxygen evolution. J Mater Chem A 9:3482–3491

    Article  CAS  Google Scholar 

  79. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M (Ni Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat Mater 11:550–557. https://doi.org/10.1038/nmat3313

    Article  CAS  PubMed  Google Scholar 

  80. Feng YQ, Wang X, Huang JF, Dong PP, Ji J, Li J, Cao LY, Feng LL, Jin P, Wang CR (2020) Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis. Chem Eng J 390:124525. https://doi.org/10.1016/j.cej.2020.124525

    Article  CAS  Google Scholar 

  81. Bolar S, Shit S, Kumar JS, Murmu NC, Ganesh RS, Inokawa H, Kuila T (2019) Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Appl Catal B Environ 254:432–442. https://doi.org/10.1016/j.apcatb.2019.04.028

    Article  CAS  Google Scholar 

  82. Anandhababu G, Huang YY, Babu DD, Wu MX, Wang YB (2018) Oriented growth of ZIF-67 to derive 2D porous CoPO nanosheets for electrochemical-/photovoltage-driven overall water splitting. Adv Funct Mater 28:1706120. https://doi.org/10.1002/adfm.201706120

    Article  CAS  Google Scholar 

  83. Li JY, Yan M, Zhou XM, Huang ZQ, Xia ZM, Chang CR, Ma YY, Qu YQ (2016) Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv Funct Mater 26:6785–6796. https://doi.org/10.1002/adfm.201601420

    Article  CAS  Google Scholar 

  84. Hao YC, Xu YQ, Liu W, Sun XM (2018) Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. Mater Horiz 5:108–115. https://doi.org/10.1039/c7mh00706j

    Article  CAS  Google Scholar 

  85. Wu LB, Yu L, Zhang FH, McElhenny B, Luo D, Karim A, Chen S, Ren ZF (2021) Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv Funct Mater 31:2006484. https://doi.org/10.1002/adfm.202006484

    Article  CAS  Google Scholar 

  86. Tang T, Jiang WJ, Niu S, Liu N, Luo H, Chen YY, Jin SF, Gao F, Wan LJ, Hu JS (2017) Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J Am Chem Soc 139:8320–8328. https://doi.org/10.1021/jacs.7b03507

    Article  CAS  PubMed  Google Scholar 

  87. Shi HH, Liang HF, Ming FW, Wang ZC (2017) Efficient overall water-splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew Chem 129:588–592. https://doi.org/10.1002/ange.201610211

    Article  Google Scholar 

  88. Jin HY, Wang J, Su DF, Wei ZZ, Pang ZF, Wang Y (2015) In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J Am Chem Soc 137:2688–2694. https://doi.org/10.1021/ja5127165

    Article  CAS  PubMed  Google Scholar 

  89. Chen K, Wang XJ, Wang G, Wang BB, Liu XJ, Bai JT, Wang H (2018) A new generation of high performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries. Chem Eng J 347:552–562. https://doi.org/10.1016/j.cej.2018.04.125

    Article  CAS  Google Scholar 

  90. Wang YK, Zhang RF, Chen J, Wu H, Lu SY, Wang K, Li HL, Harris CJ, Xi K, Kumar RV, Ding SJ (2019) Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv Energy Mater 9:1900953. https://doi.org/10.1002/aenm.201900953

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2023–00208574). The theoretical calculation of this work was performed partly at the High-Performance Computing Center at Henan Institute of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

I.H.Lee: supervision and funding; K.Chen: writing—original draft, conceptualization, and methodology; Y.H.Cao: methodology, writing—review and editing; G.C.Kim: data collection, writing—review and editing; C.Kim: data collection, writing—review and editing; S.Yadav: data collection, writing—review and editing; V.D.Dao: writing—review and editing; All authors reviewed the manuscript.

Corresponding author

Correspondence to In-Hwan Lee.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8132 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Cao, YH., Kim, GC. et al. Synergism of electronic modulation and geometric architecture: bimetallic phosphide heterostructure on nickel foam for efficient water splitting. Adv Compos Hybrid Mater 7, 71 (2024). https://doi.org/10.1007/s42114-024-00875-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00875-w

Keywords

Navigation