Skip to main content

Advertisement

Log in

Embedding of stereo molecular scaffold into the planar g-C3N4 nanosheets for efficient photocatalytic hydrogen evolution under ordinary pressure

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4), as an organic polymer semiconductor, has been the focus of photocatalysts due to its physical and chemical stability, low cost and non-toxicity. However, pristine g-C3N4 also has many drawbacks, such as small specific surface area and easy recombination of photoexcited carriers, which hampered its practical application. In this work, we first propose a design idea of embedding stereo molecular scaffold into g-C3N4 framework with a facile copolymerization method for better exfoliating g-C3N4 to reach a better photocatalytic hydrogen evolution under ordinary pressure. The stereo molecular scaffold looses the interlayer stacking of bulk g-C3N4, benefitting the exfoliation of g-C3N4. The hydrogen evolution activity of stereo molecular scaffold doped g-C3N4 (AMCN-3-E) is about 7.54 times higher than that of the pristine MCN, which may due to the activated π → π* and n → π* electron transitions, creating more electron transition paths and accelerating the separation of photoexcited electrons and holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Reference

  1. Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS (2017) Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev 117:1445–1514

    CAS  Google Scholar 

  2. Dai B, Yu Y, Chen Y et al (2019) Construction of self-healing internal electric field for sustainably enhanced photocatalysis. Adv Funct Mater 29:1807934

    Google Scholar 

  3. Khan K, Tareen AK, Aslam M et al (2019) Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale 11:21622–21678

    CAS  Google Scholar 

  4. Lu L, Lv Z, Si Y, Liu M, Zhang S (2018) Recent progress on band and surface engineering of graphitic carbon nitride for artificial photosynthesis. Appl Surf Sci 462:693–712

    CAS  Google Scholar 

  5. Huang H, Dai B, Wang W et al (2017) Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods. Nano Lett 17:3803–3808

    CAS  Google Scholar 

  6. Wang W, Fang J, Shao S, Lai M, Lu C (2017) Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl Catal B Environ 217:57–64

    CAS  Google Scholar 

  7. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    CAS  Google Scholar 

  8. Bai X, Zong R, Li C, Liu D, Liu Y, Zhu Y (2014) Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite. Appl Catal B Environ 147:82–91

    CAS  Google Scholar 

  9. Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7:15–37

    Google Scholar 

  10. Lei J, Chen Y, Wang L, Liu Y, Zhang J (2015) Highly condensed g-C3N4-modified TiO2 catalysts with enhanced photodegradation performance toward acid orange 7. J Mater Sci 50:3467–3476. https://doi.org/10.1007/s10853-015-8906-3

    Article  CAS  Google Scholar 

  11. Huang T, Zhang W, Pan S et al (2020) General synthesis strategy for hollow porous prismatic graphitic carbon nitride: a high-performance photocatalyst for H2 production and degradation of RhB. J Mater Sci 55:6037–6050. https://doi.org/10.1007/s10853-020-04439-3

    Article  CAS  Google Scholar 

  12. Lin Q, Li L, Liang S, Liu M, Bi J, Wu L (2015) Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl Catal B Environ 163:135–142

    CAS  Google Scholar 

  13. Wang S, He F, Zhao X et al (2019) Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Appl Catal B Environ 257:117931

    CAS  Google Scholar 

  14. Yin R, Luo Q, Wang D et al (2014) SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity. J Mater Sci 49:6067–6073. https://doi.org/10.1007/s10853-014-8330-0

    Article  CAS  Google Scholar 

  15. Dong G, Ai Z, Zhang L (2014) Efficient anoxic pollutant removal with oxygen functionalized graphitic carbon nitride under visible light. RSC Adv 4:5553–5560

    CAS  Google Scholar 

  16. Fontelles-Carceller O, Munoz-Batista MJ, Fernandez-Garcia M, Kubacka A (2016) Interface effects in sunlight-driven Ag/g-C3N4 composite catalysts: study of the toluene photodegradation quantum efficiency. ACS Appl Mater Inter 8:2617–2627

    CAS  Google Scholar 

  17. Si Y, Lv Z, Lu L et al (2019) Revealing important role of graphitic carbon nitride surface catalytic activity in photocatalytic hydrogen evolution by using different carbon co-catalysts. Appl Surf Sci 491:236–244

    CAS  Google Scholar 

  18. Liu Z, Qi J, Liu M et al (2018) Aqueous synthesis of ultrathin platinum/non-noble metal alloy nanowires for enhanced hydrogen evolution activity. Angew Chem Int Ed Engl 57:11678–11682

    CAS  Google Scholar 

  19. Wang W, Yu JC, Xia D, Wong PK, Li Y (2013) Graphene and g-C3N4 nanosheets cowrapped elemental alpha-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ Sci Technol 47:8724–8732

    CAS  Google Scholar 

  20. Zhou Z, Shen Y, Li Y, Liu A, Liu S, Zhang Y (2015) Chemical cleavage of layered carbon nitride with enhanced photoluminescent performances and photoconduction. ACS Nano 9:12480–12487

    CAS  Google Scholar 

  21. Niu P, Zhang L, Liu G, Cheng H-M (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    CAS  Google Scholar 

  22. Lu X, Liu Z, Li J, Zhang J, Guo Z (2017) Novel framework g-C3N4 film as efficient photoanode for photoelectrochemical water splitting. Appl Catal B Environ 209:657–662

    CAS  Google Scholar 

  23. Liu Z, Lu X (2018) Multifarious function layers photoanode based on g-C3N4 for photoelectrochemical water splitting. Chin J Catal 39:1527–1533

    CAS  Google Scholar 

  24. Li K, Zeng Z, Yan L et al (2015) Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl Catal B Environ 165:428–437

    CAS  Google Scholar 

  25. Li K, Yan L, Zeng Z et al (2014) Fabrication of H3PW12O40-doped carbon nitride nanotubes by one-step hydrothermal treatment strategy and their efficient visible-light photocatalytic activity toward representative aqueous persistent organic pollutants degradation. Appl Catal B Environ 156–157:141–152

    Google Scholar 

  26. Zhao H, Yu H, Quan X et al (2014) Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B Environ 152–153:46–50

    Google Scholar 

  27. Tong Z, Yang D, Xiao T, Tian Y, Jiang Z (2015) Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem Eng J 260:117–125

    CAS  Google Scholar 

  28. Weng B, Liu S, Zhang N, Tang Z-R, Xu Y-J (2014) A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1D–1D nanocomposite photocatalyst. J Catal 309:146–155

    CAS  Google Scholar 

  29. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21

    CAS  Google Scholar 

  30. Zhang J, Chen X, Takanabe K et al (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed Engl 49:441–444

    CAS  Google Scholar 

  31. Zhang S, Hu C, Ji H, Zhang L, Li F (2019) Facile synthesis of nitrogen-deficient mesoporous graphitic carbon nitride for highly efficient photocatalytic performance. Appl Surf Sci 478:304–312

    CAS  Google Scholar 

  32. Zhang J, Zhang G, Chen X et al (2012) Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew Chem Int Ed Engl 51:3183–3187

    CAS  Google Scholar 

  33. Che W, Cheng W, Yao T et al (2017) Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting. J Am Chem Soc 139:3021–3026

    CAS  Google Scholar 

  34. Zhang J, Zhang M, Lin S, Fu X, Wang X (2014) Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity. J Catal 310:24–30

    CAS  Google Scholar 

  35. Yang C, Wang B, Zhang L, Yin L, Wang X (2017) Synthesis of layered carbonitrides from biotic molecules for photoredox transformations. Angew Chem Int Ed Engl 56:6627–6631

    CAS  Google Scholar 

  36. Alam MJ, Ahmad S (2015) FTIR, FT-Raman, UV–Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers. Spectrochim Acta A Mol Biomol Spectrosc 136:961–978

    CAS  Google Scholar 

  37. Wang X, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    CAS  Google Scholar 

  38. Guo Y, Yang J, Chu S et al (2012) Theoretical and experimental study on narrowing the band gap of carbon nitride photocatalyst by coupling a wide gap molecule. Chem Phys Lett 550:175–180

    CAS  Google Scholar 

  39. Dong G, Ho W, Wang C (2015) Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J Mater Chem A 3:23435–23441

    CAS  Google Scholar 

  40. Yuan B, Chu Z, Li G et al (2014) Water-soluble ribbon-like graphitic carbon nitride (g-C3N4): green synthesis, self-assembly and unique optical properties. J Mater Chem C 2:8212–8215

    CAS  Google Scholar 

  41. Cao J, Nie W, Huang L, Ding Y, Lv K, Tang H (2019) Photocatalytic activation of sulfite by nitrogen vacancy modified graphitic carbon nitride for efficient degradation of carbamazepine. Appl Catal B Environ 241:18–27

    CAS  Google Scholar 

  42. Su F-Y, Zhang W-D (2017) Creating distortion in g-C3N4 framework by incorporation of ethylenediaminetetramethylene for enhancing photocatalytic generation of hydrogen. Mol Catal 432:64–75

    CAS  Google Scholar 

  43. Chen Y, Wang B, Lin S, Zhang Y, Wang X (2014) Activation of n → π* transitions in two-dimensional conjugated polymers for visible light photocatalysis. J Phys Chem C 118:29981–29989

    CAS  Google Scholar 

  44. Zheng Y, Yu Z, Ou H, Asiri AM, Chen Y, Wang X (2018) Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv Funct Mater 28:1705407

    Google Scholar 

  45. Sprick RS, Aitchison Catherine M, Berardo E et al (2018) Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. J Mater Chem A 6:11994–12003

    CAS  Google Scholar 

  46. Xu J, Wu HT, Wang X, Xue B, Li YX, Cao Y (2013) A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Phys Chem Chem Phys 15:4510–4517

    CAS  Google Scholar 

  47. Sun S-S (2007) Polymer photovoltaic optimizations from exciton level. J Mater Sci Mater Electron 18:1143–1146

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China (No. 51872138), Natural Science Foundation of Jiangsu Province (No. BK20181380), Key University Science Research Project of Jiangsu Province (No. 15KJB430022), Qing Lan Project, Six Talent Peaks Project in Jiangsu Province (No. XCL-029) and Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhou.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Sun, M., Kou, J. et al. Embedding of stereo molecular scaffold into the planar g-C3N4 nanosheets for efficient photocatalytic hydrogen evolution under ordinary pressure. J Mater Sci 56, 1630–1642 (2021). https://doi.org/10.1007/s10853-020-05287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05287-x

Navigation