Skip to main content

Advertisement

Log in

NiO/Ni nanocomposites embedded in 3D porous carbon with high performance for lithium-ion storage

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high energy storage devices such as lithium-ion batteries (LIBs) have recently attracted extensive attention, and massive efforts have been made to synthesize the high-performance electrodes for Li-ion storage. Here, a facile in situ synthesis method was proposed to prepare the NiO/Ni nanocomposites embedded in three-dimensional (3D) porous carbon network (denoted as NiO/Ni⊕C). The phase component and microstructure of the NiO/Ni⊕C were detected by using X-ray diffraction, scanning electron microscope and transmission electron microscopy. The NiO/Ni nanocomposites with the particle size of approximately 20–50 nm were uniformly dispersed in the 3D porous carbon matrix. The 3D carbon network is in favor of electrical conductivity, and effectively alleviates the volume effect during lithiation–delithiation processes, and thus help the electrode achieve high electrochemistry performance. The NiO/Ni⊕C electrodes possess a reversible specific capacity of 934 mAh g−1 at a current density of 300 mA g−1, and exhibit a superior rate performance with a specific capacity of 505 mAh g−1 at a current density of 2 A g−1. The NiO/Ni⊕C electrodes maintained a specific capacity of up to 683 mAh g−1 even after 1000 cycles at a current density of 1 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Naoi K, Ishimoto S, Miyamotoad JM, Naoi W (2012) Second generation nanohybrid supercapacitor evolution of capacitive energy storage devices. Energy Environ Sci 5:9363–9373

    CAS  Google Scholar 

  2. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Energy Mater 22:E28–E62

    CAS  Google Scholar 

  3. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    CAS  Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    CAS  Google Scholar 

  5. Liu S, Wang Z, Yu C, Wu HB, Wang G, Dong Q, Qiu J, Eychmüller A, Lou XW (2013) A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life. Adv Mater 25:3462–3467

    CAS  Google Scholar 

  6. Yu Y, Yan C, Gu L, Lang X, Tang K, Zhang L, Hou Y, Wang Z, Chen MW, Schmidt OG, Maier J (2013) Three-dimensional (3D) bicontinuous Au/amorphous-Ge thin films as fast and high-capacity anodes for lithium-ion batteries. Adv Energy Mater 3:281–285

    CAS  Google Scholar 

  7. Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Edit 53:1488–1504

    CAS  Google Scholar 

  8. Zhang J, Xie Z, Li W, Dong S, Qu M (2014) High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes. Carbon 74:153–162

    Google Scholar 

  9. Cui Q, Zhong Y, Pan L, Zhang H, Yang Y, Liu D, Teng F, Bando Y, Yao J, Wang X (2018) Recent advances in designing high-capacity anode nanomaterials for Li-ion batteries and their atomic-scale storage mechanism studies. Adv Sci 5:1700902–1700923

    Google Scholar 

  10. Ko Y, Kwon M, Song Y, Lee SW, Cho J (2018) Thin-film electrode design for high volumetric electrochemical performance using metal sputtering combined ligand exchange layer-by-layer assembly. Adv Funct Mater 28:1804926–1804937

    Google Scholar 

  11. Zhu S, Li J, Deng X, He C, Liu E, He F, Shi C, Zhao N (2017) Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv Funct Mater 27:1605017–1605024

    Google Scholar 

  12. Wang B, Li F, Wang X, Wang G, Wang H, Bai J (2019) Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries. Chem Eng J 364:57–69

    Google Scholar 

  13. Khalil A, Lalia BS, Hashaikeh R (2016) Nickel oxide nanocrystals as a lithium-ion battery anode: structure-performance relationship. J Matei Sci 51:6624–6638

    CAS  Google Scholar 

  14. Lee WW, Lee JM (2014) Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). J Mater Chem A 2:1589–1626

    CAS  Google Scholar 

  15. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    CAS  Google Scholar 

  16. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Google Scholar 

  17. Chen J, Wang Z, Mu J, Ai B, Zhang T, Ge W, Zhang L (2018) Enhanced lithium storage capability enabled by metal nickel dotted NiO–graphene composites. J Mater Sci 54:1475–1487. https://doi.org/10.1007/s10853-018-2882-3

    Google Scholar 

  18. Liang J, Hu H, Park H, Xiao C, Ding S, Paik U, Lou XW (2015) Construction of hybrid bowl-like structures by anchoring nio nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ Sci 8:1707–1711

    CAS  Google Scholar 

  19. Zhang J, Yu A (2015) Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci Bullet 60:823–838

    CAS  Google Scholar 

  20. Zhan Y, Liu N (2017) Nanostructured electrode materials for high-energy rechargeable Li. Na and Zn batteries, Chem Mater 29:9589–9604

    Google Scholar 

  21. Ai Q, Yuan Z, Huang R, Yang C, Jiang G, Xiong J, Huang Z, Yuan S (2018) One-pot co-precipitation synthesis of Fe3O4 nanoparticles embedded in 3d carbonaceous matrix as anode for lithium ion batteries. J Mater Sci 54:4212–4224. https://doi.org/10.1007/s10853-018-3141-3

    Article  CAS  Google Scholar 

  22. Wang X, Feng J, Bai Y, Zhang Q, Yin Y (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116:10983–11060

    CAS  Google Scholar 

  23. Tian J, Shao Q, Dong X, Zheng J, Pan D, Zhang X, Cao H, Hao L, Liu J, Mai X, Guo Z (2018) Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance. Electrochim Acta 261:236–245

    CAS  Google Scholar 

  24. Yang Z, Su D, Yang J, Wang J (2017) Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries. J Power Sources 363:161–167

    CAS  Google Scholar 

  25. Liu R, Shen C, Zhang C, Iocozzia J, Wang Q, Zhao S, Yuan K, Lin Z (2018) Hierarchical bicomponent TiO2 hollow spheres as a new high-capacity anode material for lithium-ion batteries. J Mater Sci 53:8499–8509. https://doi.org/10.1007/s10853-018-2195-6

    CAS  Google Scholar 

  26. Wang X, Zhang L, Zhang Z, Yu A, Wu P (2016) Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries. Phys Chem Chem Phys 18:3893–3899

    CAS  Google Scholar 

  27. Fang H, Zhao L, Yue W, Wang Y, Jiang Y, Zhang Y (2015) Facile and large-scale preparation of sandwich-structured graphene-metal oxide composites as anode materials for Li-ion batteries. Electrochim Acta 186:397–403

    CAS  Google Scholar 

  28. Oh SH, Kim JK, Kang YC, Cho JS (2018) Three-dimensionally ordered mesoporous multicomponent (Ni, Mo) metal oxide/N-doped carbon composite with superior Li-ion storage performance. Nanoscale 10:18734–18741

    CAS  Google Scholar 

  29. Feng Y, Zhang H, Zhang Y, Bai Y, Wang Y (2016) Novel peapod NiO nanoparticles encapsulated in carbon fibers for high-efficiency supercapacitors and lithium-ion batteries. J Mater Chem A 4:3267–3277

    CAS  Google Scholar 

  30. Choi SH, Kang YC (2014) Ultrafast synthesis of yolk-shell and cubic NiO nanopowders and application in lithium ion batteries. ACS Appl Mater Int 6:2312–2316

    CAS  Google Scholar 

  31. Ruan X, Yang Y, Pu K, Gao M, Liu Y, Pan H (2018) Superior long-term cyclability of a nanocrystalline NiO anode enabled by a mechanochemical reaction-induced amorphous protective layer for Li-ion batteries. J Power Sources 397:134–142

    CAS  Google Scholar 

  32. Pol VG, Thackeray MM (2011) Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: evaluation as anodes in lithium electrochemical cells. Energy Environ Sci 4:1904–1912

    CAS  Google Scholar 

  33. Zou F, Chen YM, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10:377–386

    CAS  Google Scholar 

  34. Sun X, Yan C, Chen Y, Si W, Deng J, Oswald S, Liu L, Schmidt OG (2014) Three-dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes. Adv Energy Mater 4:1300912

    Google Scholar 

  35. Ma Z, Zhang H, Zhang Y, Zhang J, Li Z (2015) Electrochemical characteristics of nanostructured NiO plates hydrothermally treated on nickel foam for Li-ion storage. Electrochim Acta 176:1427–1433

    CAS  Google Scholar 

  36. Zhou X, Yin Y-X, Wan L-J, Guo Y-G (2012) Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv Energy Mater 2:1086–1090

    CAS  Google Scholar 

  37. Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee JY (2012) Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew Chem Int Edit 51:2409–2413

    CAS  Google Scholar 

  38. Shao J, Zhou H, Feng J, Zhu M, Yuan A (2019) Facile synthesis of MOF-derived hollow NiO microspheres integrated with graphene foam for improved lithium-storage properties. J Alloy Compds 784:869–876

    CAS  Google Scholar 

  39. Zheng Q, Liu Y, Guo H, Hua X, Shi S, Zuo M (2018) Synthesis of hierarchical 1D NiO assisted by microwave as anode material for lithium-ion batteries. Mater Res Bull 98:155–159

    CAS  Google Scholar 

  40. Shi W, Zhang Y, Key J, Shen P (2018) Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material. J Power Sources 379:362–370

    CAS  Google Scholar 

  41. Zhou Z, Chen F, Kuang T, Chang L, Yang J, Fan P, Zhao Z, Zhong M (2018) Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties. Electrochim Acta 274:288–297

    CAS  Google Scholar 

  42. Li G, Li Y, Chen J, Zhao P, Li D, Dong Y, Zhang L (2017) Synthesis and research of egg shell-yolk NiO/C porous composites as lithium-ion battery anode material. Electrochim Acta 245:941–948

    CAS  Google Scholar 

  43. Chamas M, Lippens PE, Jumas JC, Hassounb J, Panero S, Scrosati B (2011) Electrochemical impedance characterization of FeSn2 electrodes for Li-ion batteries. Electrochim Acta 56:6732–6736

    CAS  Google Scholar 

  44. Jiang Y, Zhang D, Li Y, Yuan T, Bahlawane N, Liang C, Sun W, Lu Y, Yan M (2014) Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4:23–30

    CAS  Google Scholar 

  45. Tang Y, Zhang Y, Rui X, Qi D, Luo Y, Leow WR, Chen S, Guo J, Wei J, Li W, Deng J, Lai Y, Ma B, Chen X (2016) Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv Mater 28:1567–1576

    CAS  Google Scholar 

  46. Wang X, Hao H, Liu J, Huang T, Yu A (2011) A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta 56:4065–4069

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the research funding from the Hunan Wedid Materials Technology Co., Ltd. (No. 738010241) and the National Natural Science Foundation of China (No. 51767021). Thanks are also due to Chen Qingshan, Xi Desheng, Cheng Huaqiu at JEOL for some SEM observations with JSM-7900F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Li, Z., Li, P. et al. NiO/Ni nanocomposites embedded in 3D porous carbon with high performance for lithium-ion storage. J Mater Sci 55, 1659–1672 (2020). https://doi.org/10.1007/s10853-019-04075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04075-6

Navigation