Skip to main content

Advertisement

Log in

Construction of hierarchical NiFe-LDH/FeCoS2/CFC composites as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reaction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Efficient design and preparation of cost-effective and binder-free bifunctional electrocatalysts to accelerate the hydrogen and oxygen evolution reaction (HER and OER) are critical for overall water splitting. In this work, 3D hierarchical NiFe-LDH/FeCoS2/CFC electrodes were synthesized for the first time. The carboxyl groups derived from acid treating promote the homogeneously coated FeCoS2 on CFC, giving rise to the strongly coupled FeCoS2/CFC hybrid. The NiFe-LDH exhibited the vertical growth feature on the FeCoS2/CFC composite, which can efficiently expose the active edges sites. Due to unique structure and synergistic effect between the components, the NiFe-LDH/FeCoS2/CFC exhibits significant electrocatalytic activity and stability under alkaline environments, with overpotentials of 190 and 308 mV to achieve 10 mA cm−2 for OER and HER, respectively, providing it as a promising electrocatalyst for water splitting reaction. In addition, we deeply studied the synergistic catalytic mechanism of NiFe-LDH/FeCoS2/CFC, explaining the reasons leading to the improved catalytic performance of HER and OER.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yang H, Chen Z, Hao W, Xu H, Guo Y, Wu R (2019) Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon. Appl Catal B Environ 252:214–221. https://doi.org/10.1016/j.apcatb.2019.04.021

    Article  CAS  Google Scholar 

  2. Zhao G, Rui K, Dou SX, Sun W (2018) Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater 28(43):1803291. https://doi.org/10.1002/adfm.201803291

  3. Dinh KN, Zheng P, Dai Z, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q (2018) Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 14:1703257. https://doi.org/10.1002/smll.201703257

  4. Chen Y, Rui K, Zhu J, Dou SX, Sun W (2019) Recent progress on nickel-based oxide/(Oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chem-Eur J 25(3):703–713. https://doi.org/10.1002/chem.201802068

    Article  CAS  Google Scholar 

  5. Xu Z, Pan H, Lin Y, Yang Z, Wang J, Gong Y (2018) Constructing a hexagonal copper-coin-shaped NiCoSe2@NiO@CoNi2S4@CoS2 hybrid nanoarray on nickel foam as a robust oxygen evolution reaction electrocatalyst. J Mater Chem A 6(38):18641–18648. https://doi.org/10.1039/c8ta06084c

    Article  CAS  Google Scholar 

  6. Liu H, Ma X, Rao Y, Liu Y, Liu J, Wang L, Wu M (2018) Heteromorphic NiCo2S4/Ni3S2/Ni foam as a self-standing electrode for hydrogen evolution reaction in alkaline solution. ACS Appl Mater Interfaces 10(13):10890–10897. https://doi.org/10.1021/acsami.8b00296

    Article  CAS  Google Scholar 

  7. Poerwoprajitno AR, Gloag L, Cheong S, Gooding JJ, Tilley RD (2019) Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. Nanoscale 11(41):18995–19011. https://doi.org/10.1039/c9nr05802h

    Article  CAS  Google Scholar 

  8. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(146):4998. https://doi.org/10.1126/science.aad4998

  9. Eftekhari A (2017) Electrocatalysts for hydrogen evolution reaction. Int J Hydrog Energy 42(16):11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125

    Article  CAS  Google Scholar 

  10. Shang X, Qin J, Lin J, Dong B, Chi J, Liu Z, Wang L, Chai Y, Liu C (2018) Tuning the morphology and Fe/Ni ratio of a bimetallic Fe–Ni–S film supported on nickel foam for optimized electrolytic water splitting. J Colloid Interfaces Sci 523:121–132. https://doi.org/10.1016/j.jcis.2018.03.083

    Article  CAS  Google Scholar 

  11. Xiong J, Zhong H, Li J, Zhang X, Shi J, Cai W, Qu K, Zhu C, Yang Z, Beckman SP, Cheng H (2019) Engineering highly active oxygen sites in perovskite oxides for stable and efficient oxygen evolution. Appl Catal B Environ 256:117817. https://doi.org/10.1016/j.apcatb.2019.117817

  12. Wang Y, Zhang Y, Liu Z, Xie C, Feng S, Liu D, Shao M, Wang S (2017) Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew Chem Int Edit 56(21):5867–5871. https://doi.org/10.1002/anie.201701477

    Article  CAS  Google Scholar 

  13. Cai Z, Bi Y, Hu E, Liu W, Dwarica N, Tian Y, Li X, Kuang Y, Li Y, Yang X-Q, Wang H, Sun X (2018) Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv Energy Mater 8(3):1701694. https://doi.org/10.1002/aenm.201701694

  14. Hu C, Zhang L, Zhao ZJ, Li A, Chang X, Gong J (2018) Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting. Adv Mater 30(12):1705538. https://doi.org/10.1002/adma.201705538

  15. Xiong Y, Xu L, Jin C, Sun Q (2019) Interface-engineered atomically thin Ni3S2/MnO2 heterogeneous nanoarrays for efficient overall water splitting in alkaline media. Appl Catal B Environ 254:329–338. https://doi.org/10.1016/j.apcatb.2019.05.017

    Article  CAS  Google Scholar 

  16. Xiong P, Zhang X, Wan H, Wang S, Zhao Y, Zhang J, Zhou D, Gao W, Ma R, Sasaki T, Wang G (2019) Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett 19(7):4518–4526. https://doi.org/10.1021/acs.nanolett.9b01329

    Article  CAS  Google Scholar 

  17. Hu Y, Zhu J, Yang H, Lyu S, Chen J (2020) Anti-corrosion engineering of Cu2S/FeOOH hybrid nanosheets as superior bifunctional electrocatalysts for overall water splitting. Inorg Chem Commun 117:107971. https://doi.org/10.1016/j.inoche.2020.107971

    Article  CAS  Google Scholar 

  18. Yu L, Zhou H, Sun J, Qin F, Yu F, Bao J, Yu Y, Chen S, Ren Z (2017) Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ Sci 10(8):1820–1827. https://doi.org/10.1039/c7ee01571b

    Article  CAS  Google Scholar 

  19. Zhang H, Li X, Hähnel A, Naumann V, Lin C, Azimi S, Schweizer SL, Maijenburg AW, Wehrspohn RB (2018) Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv Funct Mater 28(14):1706847. https://doi.org/10.1002/adfm.201706847

  20. McCrory CC, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987. https://doi.org/10.1021/ja407115p

    Article  CAS  Google Scholar 

  21. Zhang P, Lu XF, Nai J, Zang SQ, Lou XWD (2019) Construction of hierarchical Co–Fe oxyphosphide microtubes for electrocatalytic overall water splitting. Adv Sci 6(17):1900576. https://doi.org/10.1002/advs.201900576

    Article  CAS  Google Scholar 

  22. Zhang S, Wang G, Wang B, Wang J, Bai J, Wang H (2020) 3D carbon nanotube network bridged hetero-structured Ni–Fe–S nanocubes toward high-performance lithium, sodium, and potassium storage. Adv Funct Mater 30(24):2001592. https://doi.org/10.1002/adfm.202001592

  23. Mai L, Sheng J, Xu L, Tan S, Meng J (2018) One-dimensional hetero-nanostructures for rechargeable batteries. Acc Chem Res 51(4):950–959. https://doi.org/10.1021/acs.accounts.8b00031

    Article  CAS  Google Scholar 

  24. Yuan Y, Chen R, Zhang H, Liu Q, Liu J, Yu J, Wang C, Sun Z, Wang J (2019) Hierarchical NiSe@Co2(CO3)(OH)2 heterogeneous nanowire arrays on nickel foam as electrode with high areal capacitance for hybrid supercapacitors. Electrochim Acta 294:325–336. https://doi.org/10.1016/j.electacta.2018.10.058

    Article  CAS  Google Scholar 

  25. Liu S, Lee SC, Patil U, Shackery I, Kang S, Zhang K, Park JH, Chung KY, Chan Jun S (2017) Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors. J Mater Chem A 5(3):1043–1049. https://doi.org/10.1039/c6ta07842g

    Article  CAS  Google Scholar 

  26. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135(23):8452–8455. https://doi.org/10.1021/ja4027715

    Article  CAS  Google Scholar 

  27. Jiang Y, Qian X, Niu Y, Shao L, Zhu C, Hou L (2017) Cobalt iron selenide/sulfide porous nanocubes as high-performance electrocatalysts for efficient dye-sensitized solar cells. J Power Sources 369:35–41. https://doi.org/10.1016/j.jpowsour.2017.09.080

    Article  CAS  Google Scholar 

  28. Hou Y, Lohe MR, Zhang J, Liu S, Zhuang X, Feng X (2016) Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ Sci 9(2):478–483. https://doi.org/10.1039/c5ee03440j

    Article  CAS  Google Scholar 

  29. Wang A-L, Xu H, Li G-R (2016) NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting. ACS Energy Lett 1(2):445–453. https://doi.org/10.1021/acsenergylett.6b00219

    Article  CAS  Google Scholar 

  30. Shi S, Zhang M, Liu Y, Yang G (2018) Synthesis of sandwich-like Co(CO3)0.5(OH)/graphene composite through confined growth and self-assemblies for highly reversible lithium storage. J Alloys Compd 764:709–717. https://doi.org/10.1016/j.jallcom.2018.06.147

    Article  CAS  Google Scholar 

  31. Gao Y, Wei Z, Xu J (2020) High-performance asymmetric supercapacitor based on 1T-MoS2 and MgAl-layered double hydroxides. Electrochim Acta 330:135195. https://doi.org/10.1016/j.electacta.2019.135195

  32. Li X, Hao X, Wang Z, Abudula A, Guan G (2017) In-situ intercalation of NiFe LDH materials: an efficient approach to improve electrocatalytic activity and stability for water splitting. J Power Sources 347:193–200. https://doi.org/10.1016/j.jpowsour.2017.02.062

    Article  CAS  Google Scholar 

  33. Zhao Y, Liu J, Ding C, Wang C, Zhai X, Li J, Jin H (2018) The synthesis of FeCoS2 and an insight into its physicochemical performance. CrystEngComm 20(15):2175–2182. https://doi.org/10.1039/c8ce00299a

    Article  CAS  Google Scholar 

  34. Li Q, Tang S, Tang Z, Zhang Q, Yang W (2019) Microwave-assisted synthesis of FeCoS2/XC-72 for oxygen evolution reaction. Solid State Sci 96:105968. https://doi.org/10.1016/j.solidstatesciences.2019.105968

  35. Li S, Huang W, Yang Y, Ulstrup J, Ci L, Zhang J, Lou J, Si P (2018) Hierarchical layer-by-layer porous FeCo2S4@Ni(OH)2 arrays for all-solid-state asymmetric supercapacitors. J Mater Chem A 6(41):20480–20490. https://doi.org/10.1039/c8ta07598k

    Article  CAS  Google Scholar 

  36. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14(2):831–838. https://doi.org/10.1021/nl404199v

    Article  CAS  Google Scholar 

  37. Deng C, Yang L, Yang C, Shen P, Zhao L, Wang Z, Wang C, Li J, Qian D (2018) Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors. Appl Surf Sci 428:148–153. https://doi.org/10.1016/j.apsusc.2017.09.130

    Article  CAS  Google Scholar 

  38. Ren L, Wang C, Li W, Dong R, Sun H, Liu N, Geng B (2019) Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochim Acta 318:42–50. https://doi.org/10.1016/j.electacta.2019.06.060

    Article  CAS  Google Scholar 

  39. Yan J, Sun W, Wei T, Zhang Q, Fan Z, Wei F (2012) Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J Mater Chem 22:11494-11502. https://doi.org/10.1039/c2jm30221g

    Article  Google Scholar 

  40. Guo Y, Tang J, Wang Z, Kang Y-M, Bando Y, Yamauchi Y (2018) Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47:494–502. https://doi.org/10.1016/j.nanoen.2018.03.012

    Article  CAS  Google Scholar 

  41. Zhang G, Feng Y-S, Lu W-T, He D, Wang C-Y, Li Y-K, Wang X-Y, Cao F-F (2018) Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal 8(6):5431–5441. https://doi.org/10.1021/acscatal.8b00413

    Article  CAS  Google Scholar 

  42. Liu X, Lv X, Wang P, Zhang Q, Huang B, Wang Z, Liu Y, Zheng Z, Dai Y (2019) The synergistic effect of light irradiation and interface engineering of the Co(OH)2/MoS2 heterostructure to realize the efficient alkaline hydrogen evolution reaction. Electrochim Acta 299:618–625. https://doi.org/10.1016/j.electacta.2019.01.014

    Article  CAS  Google Scholar 

  43. Feng JX, Xu H, Dong YT, Lu XF, Tong YX, Li GR (2017) Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew Chem Int Ed 56(11):2960–2964. https://doi.org/10.1002/anie.201611767

    Article  CAS  Google Scholar 

  44. Feng JX, Wu JQ, Tong YX, Li GR (2018) Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J Am Chem Soc 140(2):610–617. https://doi.org/10.1021/jacs.7b08521

    Article  CAS  Google Scholar 

  45. Xu Q, Jiang H, Zhang H, Hu Y, Li C (2019) Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl Catal B Environ 242:60–66. https://doi.org/10.1016/j.apcatb.2018.09.064

    Article  CAS  Google Scholar 

  46. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11(6):550–557. https://doi.org/10.1038/nmat3313

    Article  CAS  Google Scholar 

  47. Zhang B, Liu J, Wang J, Ruan Y, Ji X, Xu K, Chen C, Wan H, Miao L, Jiang J (2017) Interface engineering: the Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37:74–80. https://doi.org/10.1016/j.nanoen.2017.05.011

    Article  CAS  Google Scholar 

  48. Zhou J, Xu G, Zhang Z, Wang H (2019) Facile synthesis of Cu2MoS4 nanosheet/multi-walled carbon nanotube composites as a high-efficiency electrocatalyst for hydrogen evolution. New J Chem 43(24):9574–9582. https://doi.org/10.1039/c9nj01468c

    Article  CAS  Google Scholar 

  49. Saha S, Ojha K, Sharma M, Ganguli AK (2017) Ni3Co/G alloy as an earth-abundant robust and stable electrocatalyst for the hydrogen evolution reaction. New J Chem 41(13):5916–5923. https://doi.org/10.1039/c7nj00364a

    Article  CAS  Google Scholar 

  50. Anantharaj S, Kundu S (2019) Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett 4(6):1260–1264. https://doi.org/10.1021/acsenergylett.9b00686

    Article  CAS  Google Scholar 

  51. Anantharaj S, Ede SR, Karthick K, Sam Sankar S, Sangeetha K, Karthik PE, Kundu S (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci 11(4):744–771. https://doi.org/10.1039/c7ee03457a

    Article  CAS  Google Scholar 

  52. Gui L, Chen Y, He B, Li G, Xu J, Wang Q, Sun W, Zhao L (2018) Nickel-based bicarbonates as bifunctional catalysts for oxygen evolution and reduction reaction in alkaline media. Chem-Eur J 24(67):17665–17671. https://doi.org/10.1002/chem.201804118

    Article  CAS  Google Scholar 

  53. Mao H, Guo X, Fu Y, Yang H, Zhang Y, Zhang R, Song X-M (2020) Enhanced electrolytic oxygen evolution by the synergistic effects of trimetallic FeCoNi boride oxides immobilized on polypyrrole/reduced graphene oxide. J Mater Chem A 8(4):1821–1828. https://doi.org/10.1039/c9ta10756h

    Article  CAS  Google Scholar 

  54. Wang Y, Qiao M, Li Y, Wang S (2018) Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 14(17):1800136. https://doi.org/10.1002/smll.201800136

  55. Ren J-T, Yuan Z-Y (2017) Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustain Chem Eng 5(8):7203–7210. https://doi.org/10.1021/acssuschemeng.7b01419

    Article  CAS  Google Scholar 

  56. Jin S (2017) Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett 2(8):1937–1938. https://doi.org/10.1021/acsenergylett.7b00679

    Article  CAS  Google Scholar 

  57. Jamesh MI (2016) Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J Power Sources 333:213–236. https://doi.org/10.1016/j.jpowsour.2016.09.161

    Article  CAS  Google Scholar 

  58. Chen R, Hung S, Zhou D, Gao J, Yang C, Tao H, Yang H, Zhang L, Zhang L, Xiong Q, Chen HM, Liu B (2019) Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv Mater 31(41):1903909. https://doi.org/10.1002/adma.201903909

    Article  CAS  Google Scholar 

  59. Song F, Hu X (2014) Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun 5:4477. https://doi.org/10.1038/ncomms5477

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (Grant Nos. 11675098, 11975147, 21603101, 61705101), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_17R71), Outstanding Youth Foundation of Jiangsu Province of China (No. BK20200090), the Natural Science Foundation of Nanjing Institute of Technology (Grant No. CKJA201901), the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (Grant No. ASMA20191) and the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, J., Wei, H. et al. Construction of hierarchical NiFe-LDH/FeCoS2/CFC composites as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reaction. J Mater Sci 55, 16625–16640 (2020). https://doi.org/10.1007/s10853-020-05182-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05182-5

Navigation