Skip to main content

Advertisement

Log in

A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF)

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF) is known as a favorite polymer from the family of fluoropolymers due to its excellent piezoelectric properties, thermal stability, and mechanical strength. It has a good processability, and it also possess chemical resistance property to different materials such as different acids, bases, organic solvents, oil, and fat. The present study reveals an overview of the recent growth and development in the application perspective and modification of PVDF membranes, majorly focus on sensors and actuators, spin-valve devices, magnetoelectric materials, energy harvesting applications, tissue engineering, modeling engineering, and other biomedical engineering and devices. From an electronic point of view, ferroelectric polymers are insulating, polar, and possess a non-conjugated backbone; therefore, they are termed as highly insulating materials. The insulating polymers are most attractive for the study of charge transportation and storage. Such polymers also yield the best electrets for practical application because of their insulating properties and high concentration of deep trapping sites. Thus, the objective of this review is to present the physical, chemical, thermal, and mechanical properties of PVDF. This article also provides an intelligent direction in the progress of PVDF in different fields of science and technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Curie P, Curie J (1880) Dévelopment, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. C R Acad Sci 91:294–295

    Google Scholar 

  2. Nalwa HS (1995) Ferroelectric polymers: chemistry, physics, and applications. CRC Press, Marcel Dekker Inc

    Book  Google Scholar 

  3. Kawai H (1969) The piezoelectricity of polyvinylidene fluoride. Jpn J Appl Phys 8:975–976

  4. Lei KF, Hsieh YZ, Chiu YY, Wu MH (2015) The structure design of piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for the respiration monitoring under dynamic walking conditions. Sensors 15(8):18801–18812

    Article  Google Scholar 

  5. Niizeki K, Nishidate I, Uchida K, Kuwahara M (2005) Unconstrained cardiorespiratory and body movement monitoring system for home care. Med Biol Eng Comput 43:716–724

    Article  CAS  Google Scholar 

  6. Folke M, Cernerud L, Ekstrom M, Hok B (2003) Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput 41:377–383

    Article  CAS  Google Scholar 

  7. Ford TA, Hanford WE (1948) Polyvinylidene fluoride and process for obtaining the same, U.S. Patent # 2435537

  8. Furukawa T (1989a) Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions 18(3–4):143–211

    Article  CAS  Google Scholar 

  9. Lovinger AJ (1982) Poly (viny1idene fluoride): In Developments in crystalline polymers. Ed. Bassett DC, Applied Science Publishers, London, p 195

  10. Eisenmenger W, Schmidt H, Dehlen B (1999) Space charge and dipoles in polyvinylidenefluoride. Braz J Phys 29(2):295–305

    Article  CAS  Google Scholar 

  11. Sajkiewicz P, Wasiak A, Goclowski Z (1999) Phase transition during stretching of poly (vinylidene fluoride). Eur Polymer J 35(3):423–429

    Article  CAS  Google Scholar 

  12. Davis GT, McKinney JE, Broadhurst MG, Roth SC (1978) Electric-field-induced phase changes in poly (vinylidene fluoride). J Appl Phys 49(10):4998–5002

    Article  CAS  Google Scholar 

  13. Dohaney JE, Dukert AA, Preston SS (1971) Viylidene fluoride polymers In Encyclopedia of polymer science and technology. Eds. Bikales NM, John Wiley, New York, Vol. 14, pp 600–610

  14. Omnexus, Plastics and Elastomers (2020) https://omnexus.specialchem.com/selection-guide/polyvinylidene-fluoride-pvdf-plastic

  15. All Plastics, PVDF Material properties datasheet (2020), www.allplastics.com.au; all plastics- KYNAR (PVDF) data sheet.pdf

  16. Teesing. www.teesing.com/properties of PVDF, rectus chemical resistance, rectum PVDF

  17. Burkert: Chemical Resistance chart. https://www.burkert.in/en/Service-Support/Support/Glossary/Chemical-Resistance-Chart

  18. IPEX Chemical Resistance Guide for PVDF (Polyvinylidene fluoride for waste drainage systems chemical resistance data. www.ipexna.com

  19. KYNAR (PVDF) Chemical Compatibility & Chemical Resistance Chart. www.allplastic.com.au

  20. Zhang SC, Shen J, Qiu XP, Weng DS, Zhu WT (2006) ESR and vibrational spectroscopy study on poly(vinylidene fluoride) membranes with alkaline treatment. J Power Sources 153(2):234–238. https://doi.org/10.1016/j.jpowsour.2005.05.020

    Article  CAS  Google Scholar 

  21. Hashim NA, Liu Y, Li K (2011a) Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem Eng Sci 66(8):1565–1575. https://doi.org/10.1016/j.ces.2010.12.019

    Article  CAS  Google Scholar 

  22. Hoa SV, Ouellette P (1983) Stress-corrosion cracking of poly(vinylidene fluoride) in sodium-hydroxide. Polym Eng Sci 23(4):202–205. https://doi.org/10.1002/pen.760230407

    Article  CAS  Google Scholar 

  23. Hou DY, Wang J, Qu D, Luan ZK, Ren XJ (2009) Fabrication and characterization of hydrophobic PVDF hollow fiber membranes for desalination through direct contact membrane distillation. Sep Purif Technol 69(1):78–86. https://doi.org/10.1016/j.seppur.2009.06.026

    Article  CAS  Google Scholar 

  24. Ross GJ, Watts JF, Hill MP, Morrissey P (2000) Surface modification of poly(vinylidene fluoride) by alkaline treatment 1. The degradation mechanism Polymer (Vol. 41, pp. 1685–1696)

  25. Ross GJ, Watts JF, Hill MP, Morrissey P (2001) Surface modification of poly(vinylidene fluoride) by alkaline treatment: Part 2. Process modification by the use of phase transfer catalysts. Polymer 42(2):403–413. https://doi.org/10.1016/S0032-3861(00)00328-1

    Article  CAS  Google Scholar 

  26. Zhao XD, Song LZ, Fu J, Tang P, Liu F (2011) Experimental and DFT investigation of surface degradation of polyvinylidene fluoride membrane in alkaline solution. Surf Sci 605(11–12):1005–1015. https://doi.org/10.1016/j.susc.2011.02.022

    Article  CAS  Google Scholar 

  27. Nguyen T (1985) Degradation of poly(vinyl fluoride) and poly(vinylidene fluoride). J Macromol Sci Polym Rev 25(2):227–275. https://doi.org/10.1080/15583728509412823

    Article  Google Scholar 

  28. Komaki Y (1979) Growth of fine holes by the chemical etching of fission tracks in polyvinylidene fluoride. Nuclear Tracks 3(1–2):33–44

    Article  CAS  Google Scholar 

  29. Shinohara H (1979) Fluorination of polyhydrofluoroethylenes. II. Formation of perfluoroalkyl carboxylic acids on the surface region of poly(vinylidene fluoride) film by oxyfluorination, fluorination, and hydrolysis. J Polym Sci Polym Chem Ed 17(5):1543–1556. https://doi.org/10.1002/pol.1979.170170526

    Article  CAS  Google Scholar 

  30. Komaki Y, Otsu H (1981) Observation of nuclear track development in polyvinylidene fluoride with several etchants. J Electron Microsc 30(4):292–297

    CAS  Google Scholar 

  31. Kise H, Ogata H (1983) Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aquos sodium hydroxide solutions. J Polym Sci Part A-1 Polym Chem 21(12):3443–3451

    Article  CAS  Google Scholar 

  32. Wegener M, Kuenstler W, Gerhard-Multhaupt R (2006) Poling behavior and optical absorption of partially dehydrofluorinated and uniaxially stretched polyvinylidene fluoride. Ferroelectrics 336(1):3–8. https://doi.org/10.1080/00150190600694761

    Article  CAS  Google Scholar 

  33. Benzinger WD, Parekh BS, Eichelberger JL (1980) High-temperature ultrafiltration with Kynar® poly(vinylidene fluoride) membranes. Sep Sci Technol 15(4):1193–1204. https://doi.org/10.1080/01496398008076294

    Article  CAS  Google Scholar 

  34. Vigo F, Uliana C, Cavazza B, Salvemini F (1984) Mechanical, chemical and bacterial-resistance of modified polyvinylidene fluoride membranes suitable for ultrafiltration of oily emulsions. J Membr Sci 21(3):295–306. https://doi.org/10.1016/S0376-7388(00)80220-3

    Article  CAS  Google Scholar 

  35. Hashim NA, Liu Y, Li K (2011b) Preparation of PVDF hollow fiber membranes using SiO2 particles: the effect of acid and alkali treatment on the membrane performances. Ind Eng Chem Res 50(5):3035–3040

    Article  CAS  Google Scholar 

  36. Puspitasari V, Granville A, Le-Clech P, Chen V (2010) Cleaning and aging effect of sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane. Sep Purif Technol 72(3):301–308. https://doi.org/10.1016/j.seppur.2010.03.001

    Article  CAS  Google Scholar 

  37. Wang Z, Wang Z, Wu QZ, Yang D (2010) Effect of hypochlorite cleaning on the physiochemical characteristics of polyvinylidene fluoride membranes. Chem Eng J 162(3):1050–1056. https://doi.org/10.1016/j.cej.2010.07.019

    Article  CAS  Google Scholar 

  38. Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375(1–2):1–27. https://doi.org/10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  39. O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev 37(2):308–319. https://doi.org/10.1039/b711844a

    Article  CAS  Google Scholar 

  40. Dargaville TR, George GA, Hill DJT, Whittaker AK (2003) High energy radiation grafting of fluoropolymers. Prog Polym Sci 28(9):1355–1376

    Article  CAS  Google Scholar 

  41. Madorsky SL (1964) Thermal degradation of organic polymers fluorocarbon and chlorocarbon polymers: John Wiley & Sons Inc., pp 130–172

  42. Lovinger AJ, Freed DJ (1980) Inhomogeneous thermal-degradation of poly(vinylidene fluoride) crystallized from the melt. Macromolecules 13(4):989–994. https://doi.org/10.1021/Ma60076a044

    Article  CAS  Google Scholar 

  43. PVDF Material Properties Data Sheet. https://omnexus.specialchem.com/selection-guide/polyvinylidene-fluoride-pvdf-plastic

  44. Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP (2006) Degradation of polymer electrolyte membranes. Int J Hydrogen Energy 31(13):1838–1854. https://doi.org/10.1016/j.ijhydene.2006.05.006

    Article  CAS  Google Scholar 

  45. Tamura M, Yamaguchi T, Oyaba T, Yoshimi T (1975) Electroacoustic transducers with piezoelectric high polymer films. J Audio Eng Soc 23:21–26

    Google Scholar 

  46. Ribeiro C, Panadero J, Sencadas V, Lanceros-Méndez S, Tamano M, Moratal D, Salmerón-Sánchez M, Ribelles JG (2012) Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomed Mater 7:035004

    Article  CAS  Google Scholar 

  47. Jeon J-H, Kang S-P, Lee S, Oh I-K (2009) Novel biomimetic actuator based on SPEEK and PVDF. Sens Actuators B Chem 143:357–364

    Article  Google Scholar 

  48. Panwar V, Cha K, Park J-O, Park S (2012) High actuation response of PVDF/PVP/PSSA based ionic polymer metal composites actuator. Sens Actuators B Chem 161:460–470

    Article  CAS  Google Scholar 

  49. Zhang Y, Niu H, Xie S, Zhang X (2008) Numerical and experimental investigation of active vibration control in a cylindrical shell partially covered by a laminated PVDF actuator. Smart Mater Struct 17:035024

    Article  Google Scholar 

  50. Chen Z, Kwon K-Y, Tan X (2008) Integrated IPMC/PVDF sensory actuator and its validation in feedback control. Sens Actuators A Phys 144:231–241

    Article  CAS  Google Scholar 

  51. Shirinov A, Schomburg W (2008) Pressure sensor from a PVDF film. Sens Actuators A Phys 142:48–55

    Article  CAS  Google Scholar 

  52. Fujitsuka N, Sakata J, Miyachi Y, Mizuno K, Ohtsuka K, Taga Y, Tabata O (1998) Monolithic pyroelectric infrared image sensor using PVDF thin film. Sens Actuators A Phys 66:237–243

    Article  CAS  Google Scholar 

  53. Mazurek B, Janiczek T, Chmielowiec J (2001) Assessment of vehicle weight measurement method using PVDF transducers. J Electrost 51:76–81

    Article  Google Scholar 

  54. Xu G, Zhang M, Zhou Q, Chen H, Gao T, Li C, Shi G (2017) A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli. Nanoscale 9:17465–17470

    Article  CAS  Google Scholar 

  55. Wang F, Ko SY, Park JO, Park SH, Kee CD (2015) Electroactive polymer actuator based on PVDF and graphene through electrospinning. Adv Mater Res 1105:311–314

    Article  Google Scholar 

  56. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44:2410–2413

    Article  CAS  Google Scholar 

  57. Mukai K, Asaka K, Kiyohara K, Sugino T, Takeuchi I, Fukushima T, Aida T (2008) High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim Acta 53:5555–5562

    Article  CAS  Google Scholar 

  58. Saketi P, Latifi SK, Hirvonen J, Rajala S, Vehkaoja A, Salpavaara T, Lekkala J, Kallio P (2015) PVDF microforce sensor for the measurement of Z-directional strength in paper fiber bonds. Sens Actuators A Phys 222:194–203

    Article  CAS  Google Scholar 

  59. Choi S-C, Park J-S, Kim J-H (2006) Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors. Compos Struct 76:362–374

    Article  Google Scholar 

  60. Ying Z, Jiang Y, Du X, Xie G, Yu J, Wang H (2007) PVDF coated quartz crystal microbalance sensor for DMMP vapor detection. Sens Actuators B Chem 125:167–172

    Article  CAS  Google Scholar 

  61. Shin K-Y, Lee JS, Jang J (2016) Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22:95–104

    Article  CAS  Google Scholar 

  62. Yoon S, Prabu AA, Ramasundaram S, Kim KJ (2008) PVDF nanoweb touch sensors prepared using electro-spinning process for smart apparels applications. Adv Sci Technol 60:52–57

    Article  CAS  Google Scholar 

  63. Wang Y, Zheng J, Ren G, Zhang P, Xu C (2011) A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater Struct 20:045009

    Article  Google Scholar 

  64. Al-Saygh A, Ponnamma D, AlMaadeed MA, Poornima Vijayan P, Karim A, Hassan MK (2017) Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers 9(2):33

    Article  Google Scholar 

  65. Spanu A, Pinna L, Viola F, Seminara L, Valle M, Bonfiglio A, Cosseddu P (2016) A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor. Org Electron 36:57–60

    Article  CAS  Google Scholar 

  66. Tseng H-J, Tian W-C, Wu W-J (2013) P(VDF-TrFE) polymer-based thin films deposited on stainless steel substrates treated using water dissociation for flexible tactile sensor development. Sensors (Basel, Switzerland) 13:14777–14796. https://doi.org/10.3390/s131114777

    Article  CAS  Google Scholar 

  67. Naber RC, Asadi K, Blom PW, de Leeuw DM, de Boer B (2010) Organic nonvolatile memory devices based on ferroelectricity. Adv Mater 22:933–945

    Article  CAS  Google Scholar 

  68. Scott JC, Bozano LD (2007) Nonvolatile memory elements based on organic materials. Adv Mater 19:1452–1463

    Article  CAS  Google Scholar 

  69. Singh TB, Marjanović N, Matt G, Sariciftci N, Schwödiauer R, Bauer S (2004) Nonvolatile organic field-effect transistor memory element with a polymeric gate electret. Appl Phys Lett 85:5409–5411

    Article  CAS  Google Scholar 

  70. Li Y, Sinitskii A, Tour JM (2008) Electronic two-terminal bistable graphitic memories. Nat Mater 7:966–971

    Article  CAS  Google Scholar 

  71. Liang S, Yang H, Yang H, Tao B, Djeffal A, Chshiev M, Huang W, Li X, Ferri A, Desfeux R (2016) Ferroelectric control of organic/ferromagnetic spinterface. Adv Mater 28:10204–10210

    Article  CAS  Google Scholar 

  72. Zhang X, Tong J, Zhu H, Wang Z, Zhou L, Wang S, Miyashita T, Mitsuishi M, Qin G (2017) Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves. J Mater Chem C 5:5055–5062

    Article  CAS  Google Scholar 

  73. Zhu H, Yamamoto S, Matsui J, Miyashita T, Mitsuishi M (2015) Asymmetric ferroelectric switching based on an Al/PVDF Langmuir-Blodgett nanofilm/PEDOT:PSS/Al device. Mol Cryst Liq Cryst 618(1):89–94

    Article  CAS  Google Scholar 

  74. Eerenstein W, Mathur N, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765

    Article  CAS  Google Scholar 

  75. Kleemann W, Binek C (2013) Multiferroic and magnetoelectric materials. In Magnetic Nanostructures; Springer: Berlin, Germany, pp 163–187

  76. Martins P, Lanceros-Méndez S (2013) Polymer-based magnetoelectric materials. Adv Funct Mater 23:3371–3385

    Article  CAS  Google Scholar 

  77. Dong X, Wang B, Wang K, Wan J, Liu JM (2009) Ultra-sensitive detection of magnetic field and its direction using bilayer PVDF/Metglas laminate. Sens Actuators A Phys 153:64–68

    Article  CAS  Google Scholar 

  78. Qi Y, Jafferis NT, Lyons K, Jr., Lee, C.M., Ahmad, H., McAlpine, M.C. (2010) Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett 10:524–528

    Article  CAS  Google Scholar 

  79. Gutiérrez J, Lasheras A, Barandiarán JM, Vilas JL, Sebastián MS, León LM (2012) Temperature response of magnetostrictive/piezoelectric polymer magnetoelectric laminates. MRS Online Proc. Libr. Arch., 1398

  80. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38:R123

    Article  CAS  Google Scholar 

  81. Nan C, Bichurin M, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103:031101

    Article  Google Scholar 

  82. Chu Y-H, Martin LW, Holcomb MB, Gajek M, Han S-J, He Q, Balke N, Yang C-H, Lee D, Hu W (2008) Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater 7:478–482

    Article  CAS  Google Scholar 

  83. Scott J, Morrison F, Miyake M, Zubko P (2006) Nano-ferroelectric materials and devices. Ferroelectrics 336:237–245

    Article  CAS  Google Scholar 

  84. Zhai J, Dong S, Xing Z, Li J, Viehland D (2006) Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl Phys Lett 89:083507

    Article  Google Scholar 

  85. Yang F, Wen Y, Li P, Zheng M (2006) Magnetoelectric response of magnetostrictive/piezoelectric/magnetostrictive laminate composite. In Proceedings of the 2006 IEEE International Conference on Information Acquisition, Weihai, China, 20–23 August 2006; pp 1010–1014

  86. Lasheras A, Gutiérrez J, Reis S, Sousa D, Silva M, Martins P, Lanceros-Mendez S, Barandiarán J, Shishkin D, Potapov A (2015) Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite. Smart Mater Struct 24:065024

    Article  Google Scholar 

  87. Fang Z, Lu S, Li F, Datta S, Zhang Q, El Tahchi M (2009) Enhancing the magnetoelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect. Appl Phys Lett 95:112903

    Article  Google Scholar 

  88. Fetisov L, Baraban I, Fetisov YK, Burdin D, Vopson M (2017) Nonlinear magnetoelectric effects in flexible composite ferromagnetic—piezopolymer structures. J Magn Magn Mater 441:628–634

    Article  CAS  Google Scholar 

  89. Wang Y, Gray D, Berry D, Gao J, Li M, Li J, Viehland D (2011) An extremely low equivalent magnetic noise magnetoelectric sensor. Adv Mater 23(35):4111–4114

    Article  CAS  Google Scholar 

  90. Lu S, Jin J, Zhou X, Fang Z, Wang Q, Zhang Q (2011) Large magnetoelectric coupling coefficient in poly(vinylidene fluoride-hexafluoropropylene)/Metglas laminates. J Appl Phys 110:104103

    Article  Google Scholar 

  91. Lee M, Chen CY, Wang S, Cha SN, Park YJ, Kim JM, Chou LJ, Wang ZL (2012) A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:1759–1764

    Article  CAS  Google Scholar 

  92. Kim HS, Kim JH, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 12:1129–1141

    Article  Google Scholar 

  93. Vatansever D, Hadimani R, Shah T, Siores E (2011) An investigation of energy harvesting from renewable sources with PVDF andPZT. Smart Mater Struct 20:055019

    Article  Google Scholar 

  94. Gusarov B, Gusarova E, Viala B, Gimeno L, Boisseau S, Cugat O, Vandelle E, Louison B (2016) Thermal energy harvesting by piezoelectric PVDF polymer coupled with shape memory alloy. Sens Actuators A Phys 243:175–181

    Article  CAS  Google Scholar 

  95. Tamang A, Ghosh SK, Garain S, Alam MM, Haeberle J, Henkel K, Schmeisser D, Mandal D (2015) DNA-assisted β phase nucleation and alignment of molecular dipoles in PVDF film: a realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl Mater Interfaces 7:16143–16147

    Article  CAS  Google Scholar 

  96. Farinholt KM, Pedrazas NA, Schluneker DM, Burt DW, Farrar CR (2009) An energy harvesting comparison of piezoelectric and ionically conductive polymers. J Intell Mater Syst Struct 20:633–642

    Article  CAS  Google Scholar 

  97. Sun C, Shi J, Bayerl DJ, Wang X (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ Sci 4:4508–4512

    Article  CAS  Google Scholar 

  98. Li S, Crovetto A, Peng Z, Zhang A, Hansen O, Wang M, Li X, Wang F (2016) Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency. Sens Actuators A Phys 247:547–554

    Article  CAS  Google Scholar 

  99. Pi Z, Zhang J, Wen C, Zhang Z-B, Wu D (2014) Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 7:33–41

    Article  CAS  Google Scholar 

  100. Lallart M, Cottinet P-J, Lebrun L, Guiffard B, Guyomar D (2010) Evaluation of energy harvesting performance of electrostrictive polymer and carbon-filled terpolymer composites. J Appl Phys 108:034901

    Article  Google Scholar 

  101. Wankhade SH, Tiwari S, Gaur A, Maiti P (2020) PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications. Energy Rep 6:358–364

    Article  Google Scholar 

  102. Li Z, Elhassan A, Abdalla I, Zhu M, Yu J, Ding B (2019) Wearable triboelectric nanogenerators constructed from electrospun nanofibers. Energy Harvesting Properties of Electrospun Nanofibers. Published December 2019: 8–1 to 8–25

  103. Telega JJ, Wojnar R (2002) Piezoelectric effects in biological tissues. J Theor Appl Mech 40:723–759

    Google Scholar 

  104. Chang H, Wang Y (2011) Regenerative medicine and tissue engineering—cells and biomaterials; InTech: Rijeka, Croatia; pp 569–588

  105. Marques L, Holgado LA, Simões RD, Pereira JD, Floriano JF, Mota LS, Graeff CF, Constantino CJ, Rodriguez-Perez M, Matsumoto M (2013) Subcutaneous tissue reaction and cytotoxicity of polyvinylidenefluoride and polyvinylidene fluoride-trifluoroethylene blends associated with natural polymers. J Biomed Mater Res Part B Appl Biomater 101:1284–1293

    Article  Google Scholar 

  106. Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S (2015) Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf B Biointerfaces 136:46–55

    Article  CAS  Google Scholar 

  107. Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11:101–109

    Article  Google Scholar 

  108. Young TH, Lu JN, Lin DJ, Chang CL, Chang HH, Cheng LP (2008) Immobilization of L-lysine on dense and porous poly(vinylidene fluoride) surfaces for neuron culture. Desalination 234:134–143

    Article  CAS  Google Scholar 

  109. Wang F, Tanaka M, Chonan S (2002) A PVDF piezopolymer sensor for unconstrained cardiorespiratory monitoring during sleep. Int J Appl Electromagn Mech 16:181–188

    Article  Google Scholar 

  110. Bohlén M, Bolton K (2014) Conformational studies of poly(vinylidene fluoride), poly(trifluoroethylene) and poly(vinylidene fluoride-co-trifluoroethylene) using density functional theory. Phys Chem Chem Phys 16:12929–12939

    Article  Google Scholar 

  111. Ortiz E, Cuan A, Badillo C, Cortés-Romero C, Wang Q, Norena L (2010) DFT study of ferroelectric properties of the copolymers: Poly(vinylideneflouride-trifluoroethylene) and poly(vinylidenefluoride-chlorotrifluoroethylene). Int J Quantum Chem 110:2411–2417

    CAS  Google Scholar 

  112. Wang ZY, Fan HQ, Su KH, Wen ZY (2006) Structure and piezoelectric properties of poly(vinylidene fluoride) studied by density functional theory. Polymer 47:7988–7996

    Article  CAS  Google Scholar 

  113. Ramos MM, Correia HM, Lanceros-Mendez S (2005) Atomistic modelling of processes involved in poling of PVDF. Comput Mater Sci 33:230–236

    Article  CAS  Google Scholar 

  114. Holman RW, Kavarnos GJ (1996) A molecular dynamics investigation of the structural characteristics of amorphous and annealed poly(vinylidene fluoride) and vinylidene fluoride-trifluoroethylene copolymers. Polymer 37:1697–1701

    Article  CAS  Google Scholar 

  115. Bohlén M, Bolton K (2013) Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of Poly(vinylidene fluoride). Comput Mater Sci 68:73–80

    Article  Google Scholar 

  116. Satyanarayana KC, Bohlén M, Lund A, Rychwalski RW, Bolton K (2012) Analysis of the torsion angle distribution of poly(vinylidene fluoride) in the melt. Polymer 53:1109–1114

    Article  CAS  Google Scholar 

  117. López-Encarnación JM, Burton J, Tsymbal EY, Velev JP (2010) Organic multiferroic tunnel junctions with ferroelectric poly(vinylidene fluoride) barriers. Nano Lett 11:599–603

    Article  Google Scholar 

  118. Velev JP, López-Encarnación JM, Burton JD, Tsymbal EY (2012) Multiferroic tunnel junctions with poly(vinylidene fluoride). Phys Rev B 85:125103

    Article  Google Scholar 

  119. Liu Y, Genzer J, Dickey MD (2016) “2D or not 2D”: Shape-programming polymer sheets. Prog Polym Sci 52:79–106

    Article  Google Scholar 

  120. Ionov L (2013) Biomimetic hydrogel-based actuating systems. Adv Funct Mater 23:4555–4570

    Article  CAS  Google Scholar 

  121. Zhao Q, Dunlop JW, Qiu X, Huang F, Zhang Z, Heyda J, Dzubiella J, Antonietti M, Yuan J (2014) An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat Commun 5:4293

    Article  Google Scholar 

  122. Arazoe H, Miyajima D, Akaike K, Araoka F, Sato E, Hikima T, Kawamoto M, Aida T (2016) An autonomous actuator driven by fluctuations in ambient humidity. Nat Mater 15:1084–1089

    Article  CAS  Google Scholar 

  123. Deng H, Dong Y, Zhang C, Xie Y, Zhang C, Lin J (2018) An instant responsive polymer driven by anisotropy of crystal phases. Mater Horiz 5:99–107

    Article  CAS  Google Scholar 

  124. Barbosa J, Correia DM, Gonçalves R, Ribeiro C, Botelho G, Martins P, Lanceros-Mendez S (2016) Magnetically controlled drug release system through magnetomechanical actuation. Adv Healthc Mater 5:3027–3034

    Article  CAS  Google Scholar 

  125. Webber MJ, Langer R (2017) Drug delivery by supramolecular design. Chem Soc Rev 46:6600–6620

    Article  CAS  Google Scholar 

  126. James HP, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery ofdrugs—a concise overview. Acta Pharm Sin B 4:120–127

    Article  Google Scholar 

  127. He T, Wang J, Huang P, Zeng B, Li H, Cao Q, Zhang S, Luo Z, Deng DYB, Zhang H et al (2015) Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing. Colloids Surf B Biointerfaces 130:278–286

    Article  CAS  Google Scholar 

  128. Abednejad A, Ghaee A, Morais ES, Sharma M, Neves BM, Freire MG, Nourmohammadi J, Mehrizi AA (2019) Polyvinylidene fluoride–Hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior. Acta Biomater 100:142–157. ISSN 1742–7061, https://doi.org/10.1016/j.actbio.2019.10.007

  129. Xi Y et al (2020) Optimization, characterization and evaluation of ZnO/polyvinylidene fluoride nanocomposites for orthopedic applications: improved antibacterial ability and promoted osteoblast growth. Drug Delivery 27(1):1378–1385. https://doi.org/10.1080/10717544.2020.1827084

    Article  CAS  Google Scholar 

  130. Alvarez-Lorenzo C, Concheiro A (2019) Smart drug release from medical devices. J Pharmacol Exp Ther 370(3):544–554. https://doi.org/10.1124/jpet.119.257220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Saxena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, P., Shukla, P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv Compos Hybrid Mater 4, 8–26 (2021). https://doi.org/10.1007/s42114-021-00217-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00217-0

Keywords

Navigation