Skip to main content
Log in

One-pot fabrication and enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene)-Bi2S3 nanocomposites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bi2S3 nanotubes and de-doped poly(3,4-ethylenedioxythiophene) (PEDOT) composite nanopowders were synchronously synthesized by a one-pot self-assembly method. The powders were characterized by X-ray powder diffraction, infrared spectroscopy, and transmission electron microscopy, respectively. Thermoelectric properties of the Bi2S3–PEDOT composite nanopowders with different Bi2S3 contents after being cold pressed into pellets were measured at room temperature. The sample with 36.1 wt% Bi2S3 has a highest power factor of 2.3 μWm−1K−2, which is higher than that of both pure PEDOT (0.445 μWm−1K−2) and Bi2S3 (1.94 μWm−1K−2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J-K, GoddardIII WA, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168–171

    Article  CAS  Google Scholar 

  • Chen BX, Uher C, Iordanidis L, Kanatzidis MG (1997) Transport properties, of Bi2S3 and the ternary bismuth sulfides KBi6.33S10 and K2Bi8S13. Chem Mater 9:1655–1658

    Article  CAS  Google Scholar 

  • Chen Y, Kou HM, Jiang J, Su Y (2003) Morphologies of nanostructured bismuth sulfide prepared by different synthesis routes. Mater Chem Phys 82:1–4

    Article  CAS  Google Scholar 

  • Datta A, Paul J, Kar A, Patra A, Sun ZL, Chen LD, Martin J, Nolas GS (2010) Facile chemical synthesis of nanocrystalline thermoelectric alloys based on Bi–Sb–Te–Se. Cryst Growth Des 10:3983–3989

    Article  CAS  Google Scholar 

  • Du Y, Shen SZ, Cai KF, Casey PS (2012) Research progress on polymer-inorganic thermoelectric nanocomposite materials. Prog Polym Sci. doi:10.1016/j.progpolymsci.2011.11.003

    Google Scholar 

  • Feng J, Ellis TW (2003) Feasibility study of conjugated polymer nano-composites for thermoelectrics. Synth Met 135:55–56

    Article  Google Scholar 

  • Furukawa Y (1996) Electronic absorption and vibrational spectroscopies of conjugated conducting polymers. J Phys Chem 100:15644–15653

    Article  CAS  Google Scholar 

  • Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494

    Article  CAS  Google Scholar 

  • Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229–2232

    Article  CAS  Google Scholar 

  • He R, Qian XF, Yin J, Zhu ZK (2003) Preparation of Bi2S3 nanowhiskers and their morphologies. J Cryst Growth 252:505–510

    Article  CAS  Google Scholar 

  • Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731

    Article  CAS  Google Scholar 

  • Hicks LD, Harman TC, Sun X, Dresselhaus MS (1996) Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 53:10493–10496

    Article  Google Scholar 

  • Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–168

    Article  CAS  Google Scholar 

  • Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Cubic AgPb m SbTe2+m : bulk thermoelectric materials with high figure of merit. Science 303:818–821

    Article  CAS  Google Scholar 

  • Huang XH, Yang YW, Dou XC, Zhu YG, Li GG (2008) In situ synthesis of Bi/Bi2S3 heteronanowires with nonlinear electrical transport. J Alloys Compd 461:427–431

    Article  CAS  Google Scholar 

  • Ibáñez M, Guardia P, Shavel A, Cadavid D, Arbiol J, Morante JR, Cabot A (2011) Growth kinetics of asymmetric Bi2S3 nanocrystals: size distribution focusing in nanorods. J Phys Chem C 115:7947–7955

    Article  Google Scholar 

  • Jiang FX, Xu JK, Lu BY, Xie Y, Huang RJ, Li LF (2008) Thermoelectric performance of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate). Chin Phys Lett 25:2202–2205

    Article  CAS  Google Scholar 

  • Kaiser AB (2001) Electronic transport properties of conducting polymers and carbon nanotubes. Rep Prog Phys 64:1–49

    Article  CAS  Google Scholar 

  • Kim D, Kim Y, Choi K, Grunlan JC, Yu CH (2010) Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 4:513–523

    Article  CAS  Google Scholar 

  • Li Q, Shao MW, Wu J, Yu GH, Qian YT (2002) Synthesis of nano-fibrillar bismuth sulfide by a surfactant-assisted approach. Inorg Chem Commun 5:933–936

    Article  CAS  Google Scholar 

  • Li JJ, Tang XF, Li H, Yan YG, Zhang QJ (2010) Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline. Synth Met 160:1153–1158

    Article  CAS  Google Scholar 

  • Liufu SC, Chen LD, Yao Q, Wang CF (2007) Assembly of one-dimensional nanorods into Bi2S3 films with enhanced thermoelectric transport properties. Appl Phys Lett 90:112106

    Article  Google Scholar 

  • Mori T, Nishimura T, Yamaura K, Takayama-Muromachi E (2007) High temperature thermoelectric properties of a homologous series of n-type boron icosahedra compounds: A possible counterpart to p-type boron carbide. J Appl Phys 101:093714

    Article  Google Scholar 

  • See KC, Feser JP, Chen CE, Majumdar A, Urban JJ, Segalman RA (2010) Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett 10:4664–4667

    Article  CAS  Google Scholar 

  • Shi HQ, Zhou XD, Fu X, Wang DB, Hu ZS (2006) Preparation of CdS nanowires and Bi2S3 nanorods by extraction-solvothermal method. Mater Lett 60:1793–1795

    Article  CAS  Google Scholar 

  • Sun J, Yeh ML, Jung BJ, Zhang B, Feser J, Majumdar A, Katz HE (2010) Simultaneous increase in seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states. Macromolecules 43:2897–2903

    Article  CAS  Google Scholar 

  • Toshima N (2002) Conductive polymers as a new type of thermoelectric material. Macromol Symp 186:81–86

    Article  CAS  Google Scholar 

  • Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597

    Article  CAS  Google Scholar 

  • Wang YY, Cai KF, Yao X (2011) Facile fabrication and thermoelectric properties of pbTe-modified poly(3,4-ethylenedioxythiophene) nanotubes. ACS Appl Mater Interfaces 3:1163–1166

    Article  Google Scholar 

  • Xing GJ, Feng ZJ, Chen GH, Yao W, Song XM (2003) Preparation of different morphologies of nanostructured bismuth sulfide with different methods. Mater Lett 57:4555–4559

    Article  CAS  Google Scholar 

  • Yan XA, Poudel B, Ma Y, Liu WS, Joshi G, Wang H, Lan YC, Wang DZ, Chen G, Ren ZF (2010) Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett 10:3373–3378

    Article  CAS  Google Scholar 

  • Yao Q, Chen LD, Zhang WQ, Liufu SC, Chen XH (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4:2445–2451

    Article  CAS  Google Scholar 

  • Ye CH, Meng GW, Jiang Z, Wang YH, Wang GZ, Zhang LD (2002) Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors. J Am Chem Soc 124:15180–15181

    Article  CAS  Google Scholar 

  • Yu XL, Cao CB (2008) Photoresponse and field-emission properties of bismuth sulfide nanoflowers. Cryst Growth Des 8:3951–3955

    Article  CAS  Google Scholar 

  • Yu C, Kim YS, Kim D, Grunlan JC (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8:4428–4432

    Article  CAS  Google Scholar 

  • Zhang B, Sun J, Katz HE, Fang F, Opila RL (2010) Promising thermoelectric properties of commercial pedot:pss materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2:3170–3178

    Article  CAS  Google Scholar 

  • Zhu JM, Yang K, Zhu JJ, Ma GB, Zhu XH, Zhou SH, Liu ZG (2003) The microstructure studies of bismuth sulfide nanorods prepared by sonochemical method. Opt Mater 23:89–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (50872095), Doctoral Fund of Ministry of Education of China, the foundation of the State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, and Foundation of the State Key Lab of Silicon Materials, Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Feng Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y.Y., Cai, K.F. & Yao, X. One-pot fabrication and enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene)-Bi2S3 nanocomposites. J Nanopart Res 14, 848 (2012). https://doi.org/10.1007/s11051-012-0848-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0848-y

Keywords

Navigation