Skip to main content
Log in

Improved thermoelectric performance of PEDOT:PSS film treated with camphorsulfonic acid

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Thermoelectric (TE) properties of free-standing poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT:PSS) films treated with camphorsulfonic acid (CSA) and left hand camphorsulfonic acid (L-CSA) have been systematically investigated utilizing two different methods: addition of CSA/L-CSA into the PEDOT:PSS solution; or post treatment of free-standing PEDOT:PSS films with different concentration of CSA/L-CSA solution. It is verified that the post-treatment method is much more effective than the direct addition of CSA/L-CSA into the PEDOT:PSS solution. Using post-treatment method, the highest electrical conductivity can increase up to 644.7 S/cm, which is much higher than that of the direct addition method, ~206.2 S/cm at room temperature. In both cases, there is trivial change in the Seebeck coefficient. The maximum value of ZT is 0.017 at room temperature for the PEDOT:PSS film post-treated by 0.08 M CSA solution. These results demonstrate that post treatment is a promising approach to enhance the TE properties of PEDOT:PSS thin films. The difference in optical activity between CSA and L-CSA also has an effect on the electrical conductivity of PEDOT:PSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Nature 451:163–167

    Article  CAS  Google Scholar 

  2. Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Science 297:2229–2232

    Article  CAS  Google Scholar 

  3. Sales BC, Mandrus D, Williams RK (1996) Science 272:1325–1328

    Article  CAS  Google Scholar 

  4. Bell LE (2008) Science 321:1457–1461

    Article  CAS  Google Scholar 

  5. Sootsman JR, Chung DY, Kanatzidis MG (2009) Angew Chem Int Ed 48:8616–8639

    Article  CAS  Google Scholar 

  6. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Energy Environ Sci 2:466–479

    Article  CAS  Google Scholar 

  7. Li JJ, Tang XF, Li H, Yan YG, Zhang QJ (2010) Synth Met 160:1153–1158

    Article  CAS  Google Scholar 

  8. Meng CZ, Liu CH, Fan SS (2010) Adv Mater 22:535–539

    Article  CAS  Google Scholar 

  9. Lu BY, Liu CC, Lu S, Xu JK, Jiang FX, Li YZ, Zhang Z (2010) Chin Phys Lett 27:057201/1-4

    Google Scholar 

  10. Choi ES, Seol YH, Song YS, Park YW (1997) Synth Met 84:747–748

    Article  CAS  Google Scholar 

  11. Aich RB, Blouin N, Bouchard A, Leclerc M (2009) Chem Mater 21:751–757

    Article  CAS  Google Scholar 

  12. Yan H, Ohno N, Toshima N (2000) Chem Lett 29:392–393

    Article  Google Scholar 

  13. Yan H, Sada N, Toshima N, Therm J (2002) Anal Calorim 69:881–887

    Article  CAS  Google Scholar 

  14. Kaul PB, Day KA, Abramson AR (2007) J Appl Phys 101:083507/1-7

  15. Wang YJ (2009) J Phys Conf Ser 152:012023/1-10

  16. Jiang FX, Xu JK, Lu BY, Xie Y, Huang RJ, Li LF (2008) Chin Phys Lett 25:2202–2205

    Article  CAS  Google Scholar 

  17. Chang KC, Jeng MS, Yang CC, Chou YW, Wu SK, Thomas MA, Peng YC, Electron J (2009) Materials 38:1182–1188

    CAS  Google Scholar 

  18. Zhang B, Sun J, Katz HE, Fang F, Opila RL (2010) ACS Appl Mater Inter 2:3170–3178

    Article  CAS  Google Scholar 

  19. See KC, Feser JP, Chen CE, Majumdar A, Urban JJ, Segalman RA (2010) Nano Lett 10:4664–4667

    Article  CAS  Google Scholar 

  20. Kim JY, Jung JH, Lee DE, Joo J (2002) Synth Met 126:311–316

    Article  CAS  Google Scholar 

  21. Joñsson SKM, Birgerson J, Crispin X, Greczynski G, Osikowicz W, van der Gon AWD, Salaneck WR, Fahlman M (2003) Synth Met 139:1–10

    Article  Google Scholar 

  22. Ouyang J, Xu Q, Chu CW, Yang Y, Li G, Shinar J (2004) Polymer 85:8443–8450

    Article  Google Scholar 

  23. Crispin X, Jakobsson FLE, Crispin A, Grim PCM, Andersson P, Volodin A, van Haesendonck C, Van der Auweraer M, Salaneck WR, Berggren M (2006) Chem Mater 18:4354–4360

    Article  CAS  Google Scholar 

  24. Nardes AM, Kemerink M, de Kok MM, Vinken E, Maturova K, Janssen RAJ (2008) Org Electron 9:727–734

    Article  CAS  Google Scholar 

  25. Nardes AM, Janssen RAJ, Kemerink M (2008) Adv Funct Mater 18:865–871

    Article  CAS  Google Scholar 

  26. Xia Y, Ouyang J (2010) ACS Appl Mater Interfaces 2:474–483

    Article  CAS  Google Scholar 

  27. Yan H, Ohno N, Toshima N (2000) Chem Lett 392–393

  28. Yan H, Ohno T, Toshima N (2001) Macromol Mater Eng 286:139–142

    Article  CAS  Google Scholar 

  29. Hiroshige Y, Ookawa M, Toshima N (2007) Synth Met 157:467–474

    Article  CAS  Google Scholar 

  30. Fan BH, Mei XG, Ouyang J (2008) Macromolecules 41:5971–5973

    Article  CAS  Google Scholar 

  31. Xia YJ, Ouyang J (2009) Macromolecules 42:4141–4147

    Article  CAS  Google Scholar 

  32. Scholdt M, Do H, Lang J, Gall A, Colsmann A, Lemmer U, Koenig JD, Winkler M, Boettner H, Electron J (2010) Materials 39:1589–1592

    CAS  Google Scholar 

  33. Sparavigna AC, Florio L, Avloni J, Henn A (2010) Mater Sci Appl 1:253–259

    CAS  Google Scholar 

  34. Guckelsberger K, Rodhammer P, Gmelin E, Peo M, Menke K, Hocker J, Roth S, Dransfeld K (1981) Phys B: Condens Matter 43:189–191

    Article  CAS  Google Scholar 

  35. Kaiser AB (1984) Phys Rev B 29:7088–7091

    Article  CAS  Google Scholar 

  36. Moses D, Denenstein A (1984) Phys Rev B 30:2090–2097

    Article  CAS  Google Scholar 

  37. Lunn BA, Unsworth J, Booth NG, Innis PC, Mater J (1993) Science 28:5092–5098

    CAS  Google Scholar 

  38. Shakouri A, Li S, In: Proceedings of International Conference on Thermoelectrics, Baltimore, USA, September 1999.

  39. Luo J, Billep D, Waechtler T, Otto T, Toader M, Gordan O, Sheremet E, Martin J, Hietschold M, Zahn DRT, Gessner T, Mater J (2013) Chem A 1:7576–7583

    CAS  Google Scholar 

  40. Moriarty GP, De S, King PJ, Khan U, Via M, King JA, Coleman JN, Grunlan JC (2013) J Polym Sci B 51:119–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51203070 & 51073074) and Jiangxi Provincial Department of Education (GJJ12595 & GJJ11590 & GJJ13565).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congcong Liu or Jingkun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Kong, F., Liu, C. et al. Improved thermoelectric performance of PEDOT:PSS film treated with camphorsulfonic acid. J Polym Res 20, 316 (2013). https://doi.org/10.1007/s10965-013-0316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0316-0

Keywords

Navigation