Skip to main content
Log in

Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Elastic conductors play a crucial role in the fabrication of wearable electronic devices and human–computer interaction devices. Among the various candidates for elastic conductors, hydrogels, featuring 3-D swollen macromolecular networks, exhibit exceptional stretchability and biocompatibility. Notably, physical hydrogels based on poly (vinyl alcohol) (PVA), which contains a substantial number of reactive groups (-OH groups), stand out due to their remarkable biocompatibility, superior mechanical properties, and chemical stability. This review focuses on recent advancements in the composite strategy, preparation, and current applications of PVA-based conductive composite hydrogels. Firstly, PVA-based conductive hydrogels are classified based on various conductive treatments: (i) introduction of conductive fillers to the PVA with a single network structure; (ii) introduction of conductive fillers to the PVA with double/multiple network structures (e.g., PVA/carboxymethylcellulose, PVA/poly(acrylamide)); (iii) creation of double-network PVA hydrogel combined with conductive polymers including poly(3,4-ethylene-dioxythiophene)/poly(styrenesulfonate), poly(aniline), poly(pyrrole); (iv) addition of ions to a pure PVA network; (v) addition of ions to the PVA with double network structures (e.g., PVA/sodium alginate, PVA/hydroxyethylcellulose). This review includes a comparative analysis of different conductive hydrogel systems. Secondly, PVA-based conductive hydrogels with diverse functions, such as strain sensing, shape memory, antifreeze properties, transparency, and pH response, are thoroughly reviewed. Thirdly, the latest advancements in the applications of PVA-based conductive hydrogels are demonstrated, including flexible super-capacitors, human–computer interaction devices, and triboelectric nanogenerator sensors. Finally, a summary of the current state of development and critical issues with PVA conductive hydrogels is provided, along with an outlook on how to address each.

Graphical Abstract

Systematic review on PVA conductive hydrogels: outlines preparation strategies and applications in flexible electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [90]. Copyright 2021 RSC. b Schematic molecular structure of PVA/Gly/CNTs/CB hydrogel and its application in human physiological signal detection. Reproduced with permission from Ref. [91]. Copyright 2020 ACS

Fig. 4

Copyright 2021 Adv.Mater. b Schematic image of the fabrication process of the PVA/VGN sensor. Reproduced with permission from Ref. [93]. Copyright 2021 ACS

Fig. 5

Copyright 2020 Adv.Mater. b Preparation process diagram and sensing performance characterization of PVA/OP/borax hydrogen; reproduced with permission from Ref. [71]. Copyright 2022 Elsevier

Fig. 6

Copyright 2022 ACS. b Schematic diagram of the preparation mechanism of PVA-LMPs hydrogels; reproduced with permission from Ref. [98]. Copyright 2019 ACS

Fig. 7

Copyright 2022 RSC. b Preparation process of Ag@rGO/PVA/PAAm composite conductive hydrogel; reproduced with permission from Ref. [100]. Copyright 2022 Adv.Mater

Fig. 8

Copyright 2022. CELLULOSE. b The schematic diagram of the preparation process and the sensing performance testing of PEDOT: PSS/PVA hydrogel sensors; reproduced with permission from Ref. [122]. Copyright 2022 ACS

Fig. 9

Copyright 2021 RSC. b Schematic diagram of the preparation process of M-PVA hydrogels and the demonstration of the hydrogel’s elasticity, compressibility, and stretchability; reproduced with permission from Ref. [141]. Copyright 2020 RSC

Fig. 10

Copyright 2020 Elsevier. b Preparation scheme and photographs of SPP hydrogel; photographs of unknotted, knotted, stretched, and recovered SPP hydrogel; photographs of compression process of SPP hydrogel; reproduced with permission from Ref. [148]. Copyright 2018 ACS

Fig. 11

Copyright 2018 AFM. b Structure of hydrogel network; PVA/CNF hydrogels in use; photographs of PVA/CNF hydrogels in use. Reproduced with permission from Ref. [153]. Copyright 2019 Elsevier

Fig. 12

Copyright 2022 Wiley. b Schematic diagram of the preparation process of PBSTCE organic hydrogel; illuminated light bulb experiment of initial and self-healing PBSTCE hydrogel; reproduced with permission from Ref. [165]. Copyright 2023 Elsevier

Fig. 13

Reproduced with permission from Ref. [166]. Copyright 2022 Elsevier. b Schematic diagram of a flexible sensor fabricated by inspiration of hair and mechanical receptors under the skin surface, where the inclined cylinder is similar to the hair on the skin surface; schematic diagram of the process of ionic hydrogel sensor fabrication; schematic diagram of the sensing mechanism of a pressure sensor with stable/unstable microstructure before and after applying pressure; loading and unloading of different objects (a book and a packet of tissue), the signal output of the sensor attached to the fingertip; flexible sensor for carotid pulse wave monitoring; pulse wave monitoring; radial pulse wave monitoring; fingertip artery pulse wave monitoring. Reproduced with permission from Ref. [167]. Copyright 2022 Elsevier

Fig. 14

Reproduced with permission from Ref. [171]. Copyright 2021 Elsevier. b Schematic diagram of PVA/IL hydrogel preparation. Reproduced with permission from Ref. [172]. Copyright 2022 Elsevier

Fig. 15

Reproduced with permission from Ref. [173]. Copyright 2022 Elsevier. b Description of the preparation of TCGP hydrogels; configuration of the generator; description of the process of electricity generation by moisture; mechanism of electricity generation by TCGP hydrogels using moisture. Reproduced with permission from Ref. [174]. Copyright 2020 RSC

Fig. 16

Copyright 2022 MDPI. b Preparation process of lignin reinforced hydrogels (LRP) and its applications. Photos showing the shape recovery process of LRP hydrogel in acidic/basic solutions. Mechanism of moist-electric generators based on LRP hydrogel. Reproduced with permission from Ref. [176]. Copyright 2021 Elsevier

Fig. 17

Copyright 2021 Elsevier. b Schematic diagram of the preparation of PANI@ Mxene/PVA hydrogel composite; schematic demonstration of a flexible supercapacitor based on PANI@ Mxene/PVA. Reproduced with permission from Ref. [182]. Copyright 2022 Elsevier. c Schematic illustration of interactions within PACP/PVA hydrogel; photographs of PACP/PVA-0.8 hydrogel with various shapes. Reproduced with permission from Ref. [183]. Copyright 2021 Springer

Fig. 18

Reproduced with permission from Ref. [190]. Copyright 2017 Wiley. b Design and schematic diagram of the operating mechanism of CPH-TENG in single electrode mode; CPH-TENG (CPH width 1.0 cm, length 1.5 cm) lit by a finger and 15 LEDs (white and blue); CPH-TENG with contact separation motion (CPH width 1.0 cm, 1.5 cm long) with open circuit voltage (VOC), short circuit charge (QSC), and short circuit current (ISC); reproduced with permission from Ref. [191]. Copyright 2020 RSC

Fig. 19

Reproduced with permission from Ref. [193]. Copyright 2022 APM. b Optical photograph of fabricated SPE-TENG. A schematic of the SPE-TENG working mechanism in SE mode. Schematic of layer structure and equivalent circuit of SPE-TENG. Reproduced with permission from Ref. [194]. Copyright 2021 Elsevier

Fig. 20

Copyright 2020 ACS. b Schematic illustration of the as-synthesized MXene/PVA hydrogel showing the primary and secondary cross-link networks, operating principles, and output performance of the MH-TENG. Illustration of handwriting on the surface of MH-TENG. Reproduced with permission from Ref. [196]. Copyright 2021 AFM

Similar content being viewed by others

Data availability statement

Data will be available upon request.

References

  1. Zhang J, Tao D (2021) Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things. IEEE Internet Things J 8(10):7789–7817. https://doi.org/10.1109/jiot.2020.3039359

    Article  Google Scholar 

  2. Jakab K, Csipor J, Ulbert I et al (2022) EEG sensor system development consisting of solid polyvinyl alcohol-glycerol-NaCl contact gel and 3D-printed, silver-coated polylactic acid electrode for potential brain-computer interface use. Mater Today Chem 26. https://doi.org/10.1016/j.mtchem.2022.101085

  3. Guo Z, Liu Z, Liu W et al (2021) Multifunctional flexible polyvinyl alcohol nanocomposite hydrogel for stress and strain sensor. J Nanopart Res 23(10). https://doi.org/10.1007/s11051-021-05333-y

  4. Karimzadeh Z, Mahmoudpour M, Rahimpour E et al (2022) Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: advances toward designing the ideal flexible/wearable nanoprobes. Adv Colloid Interface Sci 305. https://doi.org/10.1016/j.cis.2022.102705

  5. Wen N, Jiang B, Wang X et al (2020) Overview of polyvinyl alcohol nanocomposite hydrogels for electro-skin, actuator, supercapacitor and fuel cell. Chem Rec 20(8):773–792. https://doi.org/10.1002/tcr.202000001

    Article  Google Scholar 

  6. Li T, Wei H, Zhang Y et al (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications 309:120678

    Google Scholar 

  7. Zhao X, Zheng M, Gao X et al (2021) The application of MOFs-based materials for antibacterials adsorption 440:213970

    Google Scholar 

  8. Lu H, Wang Y, Wang Y et al (2015) Adjusting phase transition of titania-based nanotubes via hydrothermal and post treatment 5(109):89777–89782

    Google Scholar 

  9. Wang B, Zhang H-R, Huang C et al (2017) Study on non-isothermal crystallization behavior of isotactic polypropylene/bacterial cellulose composites 7(67):42113–42122

    Google Scholar 

  10. Gao C, Liao J, Lu J et al (2021) The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review 41(1):1–20

    Google Scholar 

  11. Wang B, Lin F-H, Zhao Y-Y et al (2019) Isotactic polybutene-1/bamboo powder composites with excellent properties at initial stage of molding. 11(12): 1981

  12. Wang B, Mao S, Lin F et al (2021) Interfacial compatibility on the crystal transformation of isotactic poly (1-butene)/herb residue composite. 13(10): 1654

  13. Mao S-D, Zhang M, Lin F-H et al (2022) Attapulgite structure reset to accelerate the crystal transformation of isotactic polybutene 14(18):3820

    Google Scholar 

  14. Wang B, Nie K, Xue X-R et al (2018) Preparation of maleic anhydride grafted polybutene and its application in isotactic polybutene-1/microcrystalline cellulose composites. 10(4): 393

  15. Wang B, Lin F-H, Li X-Y et al (2018) Isothermal crystallization and rheology properties of isotactic polypropylene/bacterial cellulose composite 10(11):1284

    Google Scholar 

  16. Wang B, Lin F-H, Li X-Y et al (2019) Transcrystallization of isotactic polypropylene/bacterial cellulose hamburger composite 11(3):508

    Google Scholar 

  17. Zhao X, Zhao Y, Zheng M et al (2019) Efficient separation of vitamins mixture in aqueous solution using a stable zirconium-based metal-organic framework 555:714–721

    Google Scholar 

  18. Zhao X, Gao X, Zhang Y-N et al (2023) Construction of dual sulfur sites in metal–organic framework for enhanced mercury (II) removal. 631: 191–201

  19. Zhao X, Wang Y, Li Y et al (2019) Synergy effect of pore structure and amount of carboxyl site for effective removal of Pb2+ in metal–organic frameworks. 64(6): 2728–2735

  20. Hou C, Yang W, Kimura H et al (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. 142: 185–195

  21. Lei D, Liu N, Su T et al (2022) Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism. Adv Mater. https://doi.org/10.1002/adma.202110608

    Article  Google Scholar 

  22. Shen Y, Yang W, Hu F et al (2023) Ultrasensitive wearable strain sensor for promising application in cardiac rehabilitation. Adv Compos Hybrid Mater 6(1). https://doi.org/10.1007/s42114-022-00610-3

  23. Lin Z, Li X, Zhang H et al (2023) Research progress of MXenes and layered double hydroxides for supercapacitors.

  24. Yang S, Shi C, Qu K et al (2023) Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. 1–12

  25. Norizan MN, Moklis MH, Demon SZN et al (2020) Carbon nanotubes: functionalisation and their application in chemical sensors. RSC Adv 10(71):43704–43732. https://doi.org/10.1039/d0ra09438b

    Article  Google Scholar 

  26. He Y, Zhou M, Mahmoud MHH et al (2022) Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Advanced Composites And Hybrid Materials 5(3):1939–1950. https://doi.org/10.1007/s42114-022-00525-z

    Article  Google Scholar 

  27. Jiang X, Chen Y, Meng X et al (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review 191:448–470

    Google Scholar 

  28. Hernaez M (2020) Applications of graphene-based materials in sensors. Sensors 20(11). https://doi.org/10.3390/s20113196

  29. Yuan G, Wan T, BaQais A et al (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors 212:118101

    Google Scholar 

  30. Zhang J, Wang Y, Wang Y et al (2017) Catalytic activity for oxygen reduction reaction on CoN2 embedded graphene: a density functional theory study. 164(12): F1122

  31. Chen S, Wang H-Z, Zhao R-Q et al (2020) Liquid metal composites Matter 2(6):1446–1480. https://doi.org/10.1016/j.matt.2020.03.016

    Article  Google Scholar 

  32. Noah NM (2020) Design and synthesis of nanostructured materials for sensor applications. J Nanomater 2020. https://doi.org/10.1155/2020/8855321

  33. Jiang D, Wang Y, Li B et al (2019) Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate. Macromol Mater Eng 304(7). https://doi.org/10.1002/mame.201900074

  34. Jia Z, Li Z, Ma S et al (2021) Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. Journal Of Colloid And Interface Science 584:1–10. https://doi.org/10.1016/j.jcis.2020.09.035

    Article  Google Scholar 

  35. Srinivasan R, Sankar AR (2022) Intrinsically conducting polymers in flexible and stretchable resistive strain sensors: a review. J Mater Sci. https://doi.org/10.1007/s10853-022-07479-z

    Article  Google Scholar 

  36. Lan D, Wang Y, Wang Y et al (2023) Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline 651:494–503

    Google Scholar 

  37. Ruan J, Chang Z, Rong H et al (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. 118208

  38. Gao Z-Q, Li H-J, Gu J-Z et al (2016) Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties. 241: 121–130

  39. Hao XL, Ma YY, Zang HY et al (2015) A polyoxometalate‐encapsulating cationic metal–organic framework as a heterogeneous catalyst for desulfurization. 21(9): 3778–3784

  40. Hao X-L, Jia S-F, Ma Y-Y et al (2016) Two new Keggin-type polyoxometalate-based entangled coordination networks constructed from metal-organic chains with dangling arms 72:132–137

    Google Scholar 

  41. Wang R, Wang Y, Mao S et al (2021) Different morphology MoS 2 over the gC 3 N 4 as a boosted photo-catalyst for pollutant removal under visible-light. 31: 32–42

  42. Zhao X, Wang T, Du G et al (2019) Effective removal of humic acid from aqueous solution in an Al-based metal–organic framework. 64(8): 3624–3631

  43. Zhao X, Wei Y, Zhao H et al (2018) Functionalized metal-organic frameworks for effective removal of rocephin in aqueous solutions 514:234–239

    Google Scholar 

  44. Zheng M, Zhao X, Wang K et al (2019) Highly efficient removal of Cr (VI) on a stable metal–organic framework based on enhanced H-bond interaction. 58(51): 23330–23337

  45. He Y, Zhao L, Zhang J et al (2020) A breathable, sensitive and wearable piezoresistive sensor based on hierarchical micro-porous PU@CNT films for long-term health monitoring. Compos Sci Technol 200. https://doi.org/10.1016/j.compscitech.2020.108419

  46. Yu X, Wu Z, Weng L et al (2023) Flexible strain sensor enabled by carbon nanotubes-decorated electrospun TPU membrane for human motion monitoring. Adv Mater Interfaces. https://doi.org/10.1002/admi.202202292

    Article  Google Scholar 

  47. Yang Z, Wu Z, Jiang D et al (2021) Ultra-sensitive flexible sandwich structural strain sensors based on a silver nanowire supported PDMS/PVDF electrospun membrane substrate. Journal Of Materials Chemistry C 9(8):2752–2762. https://doi.org/10.1039/d0tc04659k

    Article  Google Scholar 

  48. Soe HM, Abd Manaf A, Matsuda A et al (2020) Development and fabrication of highly flexible, stretchable, and sensitive strain sensor for long durability based on silver nanoparticles-polydimethylsiloxane composite. J Mater Sci-Mater Electron 31(14):11897–11910. https://doi.org/10.1007/s10854-020-03744-6

    Article  Google Scholar 

  49. Jiang NI, Hu DW, Xu YQ et al (2021) Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing. Adv Compos Hybrid Mater 4(3):574–583. https://doi.org/10.1007/s42114-021-00262-9

    Article  Google Scholar 

  50. Georgopoulou A, Kummerloewe C, Clemens F (2020) Effect of the elastomer matrix on thermoplastic elastomer-based strain sensor fiber composites. Sensors 20(8). https://doi.org/10.3390/s20082399

  51. Khalid MAU, Chang SH (2022) Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: a review. Compos Struct 284. https://doi.org/10.1016/j.compstruct.2021.115214

  52. Wen N, Zhang L, Jiang D et al (2020) Emerging flexible sensors based on nanomaterials: recent status and applications. J Mater Chem A 8(48):25499–25527. https://doi.org/10.1039/d0ta09556g

    Article  Google Scholar 

  53. Hou XT, Sun JX, Lian MY et al (2023) Emerging synthetic methods and applications of MOF-based gels in supercapacitors, water treatment, catalysis, adsorption, and energy storage. Macromol Mater Eng 308(2). https://doi.org/10.1002/mame.202200469

  54. Wang H, Zhou R, Li D et al (2021) High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 15(6):9690–9700. https://doi.org/10.1021/acsnano.1c00259

    Article  Google Scholar 

  55. Zou Y, Chen C, Sun Y et al (2021) Flexible, all-hydrogel supercapacitor with self-healing ability. Chem Eng J 418:128616. https://doi.org/10.1016/j.cej.2021.128616

    Article  Google Scholar 

  56. Kanoun O, Bouhamed A, Ramalingame R et al (2021) Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors 21(2). https://doi.org/10.3390/s21020341

  57. Zhou B, Liu Z, Li C et al (2021) A highly stretchable and sensitive strain sensor based on dopamine modified electrospun SEBS fibers and MWCNTs with carboxylation. Adv Electron Mater 7(8). https://doi.org/10.1002/aelm.202100233

  58. Fan M, Wu L, Hu Y et al (2021) A highly stretchable natural rubber/buckypaper/natural rubber (NR/N-BP/NR) sandwich strain sensor with ultrahigh sensitivity. Adv Compos Hybrid Mater 4(4):1039–1047. https://doi.org/10.1007/s42114-021-00298-x

    Article  Google Scholar 

  59. Wu YF, Wu JB, Lin Y et al (2023) Melamine sponge skeleton loaded organic conductors for mechanical sensors with high sensitivity and high resolution. Adv Compos Hybrid Mater 6(1). https://doi.org/10.1007/s42114-022-00581-5

  60. Kundu R, Payal P (2020) Antimicrobial hydrogels: promising soft biomaterials Chemistryselect 5(46):14800–14810. https://doi.org/10.1002/slct.202003666

    Article  Google Scholar 

  61. Cha GD, Lee WH, Lim C et al (2020) Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale 12(19):10456–10473. https://doi.org/10.1039/d0nr01456g

    Article  Google Scholar 

  62. Xu J, Tsai Y-L, Hsu S-H. (2020) Design strategies of conductive hydrogel for biomedical applications. Molecules 25(22). https://doi.org/10.3390/molecules25225296

  63. Chyzy A, Plonska-Brzezinska ME (2020) Hydrogel properties and their impact on regenerative medicine and tissue engineering. Molecules 25(24). https://doi.org/10.3390/molecules25245795

  64. Xu JQ, Zhang MY, Du WZ et al (2022) Chitosan-based high-strength supramolecular hydrogels for 3D bioprinting. Int J Biol Macromol 219:545–557. https://doi.org/10.1016/j.ijbiomac.2022.07.206

    Article  Google Scholar 

  65. Eivazzadeh-Keihan R, Noruzi EB, Aliabadi HAM et al (2022) Recent advances on biomedical applications of pectin-containing biomaterials. Int J Biol Macromol 217:1–18. https://doi.org/10.1016/j.ijbiomac.2022.07.016

    Article  Google Scholar 

  66. Shokrani H, Shokrani A, Seidi F et al (2022) Biomedical engineering of polysaccharide-based tissue adhesives: recent advances and future direction. Carbohydr Polym 295. https://doi.org/10.1016/j.carbpol.2022.119787

  67. Bakadia BM, Zhong A, Li X et al (2022) Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. Adv Compos Hybrid Mater 5(4):2847–2872. https://doi.org/10.1007/s42114-022-00467-6

    Article  Google Scholar 

  68. Chang XH, Chen LR, Chen JW et al (2021) Advances in transparent and stretchable strain sensors. Adv Compos Hybrid Mater 4(3):435–450. https://doi.org/10.1007/s42114-021-00292-3

    Article  Google Scholar 

  69. Shen J, Dai Y, Xia F et al (2022) Role of divalent metal ions in the function and application of hydrogels. Prog Polym Sci 135. https://doi.org/10.1016/j.progpolymsci.2022.101622

  70. Zhang H, Shi LWE, Zhou J (2022) Recent developments of polysaccharide-based double-network hydrogels. J Polym Sci. https://doi.org/10.1002/pol.20220510

    Article  Google Scholar 

  71. Ma Y, Liu K, Lao L et al (2022) A stretchable, self-healing, okra polysaccharide-based hydrogel for fast-response and ultra-sensitive strain sensors. Int J Biol Macromol 205:491–499. https://doi.org/10.1016/j.ijbiomac.2022.02.065

    Article  Google Scholar 

  72. Tang L, Wu S, Qu J et al (2020) A review of conductive hydrogel used in flexible strain sensor. 13(18):3947. https://doi.org/10.3390/ma13183947

  73. Nasution H, Harahap H, Dalimunthe NF et al (2022) Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: a review. Gels 8(9). https://doi.org/10.3390/gels8090568

  74. Taaca KLM, Prieto EI, Vasquez MR Jr. (2022) Current trends in biomedical hydrogels: from traditional crosslinking to plasma-assisted synthesis. Polymers 14(13). https://doi.org/10.3390/polym14132560

  75. Takeno H, Suto N (2022) Robust and highly stretchable chitosan nanofiber/alumina-coated silica/carboxylated poly (vinyl alcohol)/borax composite hydrogels constructed by multiple crosslinking. Gels 8(1). https://doi.org/10.3390/gels8010006

  76. Wang YS, Zheng YD, He W et al (2017) Reprint of: Preparation of a novel sodium alginate/polyvinyl formal composite with a double crosslinking interpenetrating network for multifunctional biomedical application. Compo B Eng 121:9–22. https://doi.org/10.1016/j.compositesb.2017.06.023

    Article  Google Scholar 

  77. Pouranvari S, Ebrahimi F, Javadi G et al (2016) Chemical cross-linking of chitosan/polyvinyl alcohol electrospun nanofibers. Mater Tehnol 50(5):663–666. https://doi.org/10.17222/mit.2015.083

  78. Karimi E, Barekati SS, Raisi A et al (2019) High-flux electrospun polyvinyl alcohol microfiltration nanofiber membranes for treatment of oil water emulsion. Desalin Water Treat 147:20–30. https://doi.org/10.5004/dwt.2019.23576

    Article  Google Scholar 

  79. Raza MA, Jeong J-O, Park SH (2021) State-of-the-art irradiation technology for polymeric hydrogel fabrication and application in drug release system. Front Mater 8. https://doi.org/10.3389/fmats.2021.769436

  80. Hu MF, Gao Y, Jiang YJ et al (2021) High-performance strain sensors based on bilayer carbon black/PDMS hybrids. Adv Compos Hybrid Mater 4(3):514–520. https://doi.org/10.1007/s42114-021-00226-z

    Article  Google Scholar 

  81. Atif M, Afzaal I, Naseer H et al (2020) Review-surface modification of carbon nanotubes: a tool to control electrochemical performance. Ecs J Solid State Sci Technol 9(4). https://doi.org/10.1149/2162-8777/ab8929

  82. Gupta N, Gupta SM, Sharma SK (2019) Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters 29(5):419–447. https://doi.org/10.1007/s42823-019-00068-2

    Article  Google Scholar 

  83. Nag A, Alahi MEE, Mukhopadhyay SC et al (2021) Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 21(4). https://doi.org/10.3390/s21041261

  84. Yu W, Sisi L, Haiyan Y et al (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10(26):15328–15345. https://doi.org/10.1039/d0ra01068e

    Article  Google Scholar 

  85. Tan D, Jiang C, Li Q et al (2020) Silver nanowire networks with preparations and applications: a review. J Mater Sci Mater Electron 31(18):15669–15696. https://doi.org/10.1007/s10854-020-04131-x

    Article  Google Scholar 

  86. Liu J, Chen E, Wu Y et al (2022) Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection. Adv Compos Hybrid Mater 5(2):1196–1205. https://doi.org/10.1007/s42114-022-00472-9

    Article  Google Scholar 

  87. Hua Z, Yu T, Liu D et al (2021) Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens Bioelectron 179. https://doi.org/10.1016/j.bios.2021.113076

  88. De Volder MFL, Tawfick SH, Baughman RH et al (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539. https://doi.org/10.1126/science.1222453

    Article  Google Scholar 

  89. Ma P-C, Siddiqui NA, Marom G et al (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41(10):1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  90. Zhang Y, Ren E, Li A et al (2021) A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors. J Mater Chem B 9(3):719–730. https://doi.org/10.1039/d0tb01926g

    Article  Google Scholar 

  91. Gu J, Huang J, Chen G et al (2020) Multifunctional poly(vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature sensor. ACS Appl Mater Interfaces 12(36):40815–40827. https://doi.org/10.1021/acsami.0c12176

    Article  Google Scholar 

  92. Abolpour Moshizi S, Moradi H, Wu S et al (2021) Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogel. Adv Mater Technol 7(1). https://doi.org/10.1002/admt.202100783

  93. Ahmadi H, Moradi H, Pastras CJ et al (2021) Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocomposites. ACS Appl Mater Interfaces 13(37):44904–44915. https://doi.org/10.1021/acsami.1c12515

    Article  Google Scholar 

  94. Patel DK, Ganguly K, Dutta SD et al (2022) Multifunctional hydrogels of polyvinyl alcohol/polydopamine functionalized with carbon nanomaterials as flexible sensors. Mater Today Commun 32:103906. https://doi.org/10.1016/j.mtcomm.2022.103906

    Article  Google Scholar 

  95. Wu L, Li L, Pan L et al (2020) MWCNTs reinforced conductive, self-healing polyvinyl alcohol/carboxymethyl chitosan/oxidized sodium alginate hydrogel as the strain sensor. J Appl Polym Sci 138(6):49800. https://doi.org/10.1002/app.49800

    Article  Google Scholar 

  96. Shohreh Azadi SP, Moshizi SA, Asadnia M, Jiangtao Xu, Park I, Wang CH, Shuying Wu (2020) Biocompatible and highly stretchable PVA/AgNWs hydrogel strain sensors for human motion detection. Adv Mater Technol. https://doi.org/10.1002/admt.202000426

    Article  Google Scholar 

  97. Murakami K, Tochinai R, Tachibana D et al (2022) Direct wiring of liquid metal on an ultrasoft substrate using a polyvinyl alcohol lift-off method. ACS Appl Mater Interfaces 14(5):7241–7251. https://doi.org/10.1021/acsami.1c20628

    Article  Google Scholar 

  98. Liao M, Liao H, Ye J et al (2019) Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors. ACS Appl Mater Interfaces 11(50):47358–47364. https://doi.org/10.1021/acsami.9b16675

    Article  Google Scholar 

  99. Zhang L, Wang J, Wang S et al (2022) Neuron-inspired multifunctional conductive hydrogels for flexible wearable sensors. J Mater Chem C 10(11):4327–4335. https://doi.org/10.1039/d1tc05864a

    Article  Google Scholar 

  100. Zhang J, Zhao X, Wang Z et al (2022) Antibacterial, antifreezing, stretchable, and self-healing organohydrogel electrode based triboelectric nanogenerator for self-powered biomechanical sensing. Adv Mater Interfaces 9(15):2200290. https://doi.org/10.1002/admi.202200290

    Article  Google Scholar 

  101. Chaudhary V, Ashraf N, Khalid M et al (2022) Emergence of MXene-polymer hybrid nanocomposites as high-performance next-generation chemiresistors for efficient air quality monitoring. Adv Funct Mat 32(33). https://doi.org/10.1002/adfm.202112913

  102. Zhang D, Yin R, Zheng Y et al (2022) Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem Eng J 438. https://doi.org/10.1016/j.cej.2022.135587

  103. Zhang J, Wan L, Gao Y et al (2019) Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv Electron Mater 5(7):1900285. https://doi.org/10.1002/aelm.201900285

    Article  Google Scholar 

  104. Zhao Y, Gao W, Dai K et al (2021) Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv Mater 33(45):e2102332. https://doi.org/10.1002/adma.202102332

    Article  Google Scholar 

  105. Ren XDTSD (2022) Preparation of wearable strain sensor based on PVA/MWCNTs hydrogel composite. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2022.103278

    Article  Google Scholar 

  106. Zheng W, Li Y, Xu L et al (2020) Highly stretchable, healable, sensitive double-network conductive hydrogel for wearable sensor. Polymer 211:123095. https://doi.org/10.1016/j.polymer.2020.123095

    Article  Google Scholar 

  107. Zhu H, Xu J, Sun X et al (2022) Wearable, fast-healing, and self-adhesive multifunctional photoactive hydrogel for strain and temperature sensing. J Mater Chem A 10(43):23366–23374. https://doi.org/10.1039/d2ta06072h

    Article  Google Scholar 

  108. Cheng B, Chang S, Li H et al (2020) Highly stretchable and compressible carbon nanofiber–polymer hydrogel strain sensor for human motion detection. Macromol Mater Eng 305(3):1900813. https://doi.org/10.1002/mame.201900813

    Article  Google Scholar 

  109. Zhang H, Ren P, Yang F et al (2020) Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions. J Mater Chem B 8(46):10549–10558. https://doi.org/10.1039/d0tb02100h

    Article  Google Scholar 

  110. Chen H, Huang J, Liu J et al (2021) High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J Mater Chem A 9(40):23243–23255. https://doi.org/10.1039/d1ta07127k

    Article  Google Scholar 

  111. Wei J, Wang R, Pan F et al (2022) Polyvinyl alcohol/graphene oxide conductive hydrogels via the synergy of freezing and salting out for strain sensors. Sensors (Basel) 22(8). https://doi.org/10.3390/s22083015

  112. Kong DS, El-Bahy ZM, Algadi H et al (2022) Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Advanced Composites And Hybrid Materials 5(3):1976–1987. https://doi.org/10.1007/s42114-022-00531-1

    Article  Google Scholar 

  113. Li K, Yang X, Dong X et al (2023) Easy regulation of chitosan-based hydrogel microstructure with citric acid as an efficient buffer. Carbohydr Polym 300:120258. https://doi.org/10.1016/j.carbpol.2022.120258

    Article  Google Scholar 

  114. Li G-Y, Li J, Li Z-J et al (2022) Hierarchical PVDF-HFP/ZnO composite nanofiber-based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv Compos Hybrid Mater 5(2):766–775. https://doi.org/10.1007/s42114-021-00331-z

    Article  Google Scholar 

  115. Dong X, Tong S, Dai K et al (2022) Preparation of PVA/PAM/Ag strain sensor via compound gelation. J Appl Polym Sci 139(14). https://doi.org/10.1002/app.51883

  116. Miao L, Wang X, Li S et al (2022) An ultra-stretchable polyvinyl alcohol hydrogel based on tannic acid modified aramid nanofibers for use as a strain sensor. Polymers (Basel) 14(17). https://doi.org/10.3390/polym14173532

  117. Li L, Ji X, Chen K (2022) Conductive, self-healing, and antibacterial Ag/MXene-PVA hydrogel as wearable skin-like sensors. J Biomater Appl 8853282221131137. https://doi.org/10.1177/08853282221131137

  118. Hou B, Ma C, Li S et al (2022) Modifying the conductive properties of poly(3,4-ethylenedioxythiophene) thin films in green solvents. Front Chem 10:1005266. https://doi.org/10.3389/fchem.2022.1005266

    Article  Google Scholar 

  119. Peng Y, Yan B, Li Y et al (2019) Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. J Mater Sci 55(3):1280–1291. https://doi.org/10.1007/s10853-019-04101-7

    Article  Google Scholar 

  120. Su Z, Jin Y, Wang H et al (2022) PEDOT:PSS and its composites for flexible supercapacitors. ACS Applied Energy Materials 5(10):11915–11932. https://doi.org/10.1021/acsaem.2c01524

    Article  Google Scholar 

  121. Dodda JM, Azar MG, Bělský P et al (2022) Biocompatible hydrogels based on chitosan, cellulose/starch, PVA and PEDOT:PSS with high flexibility and high mechanical strength. Cellulose 29(12):6697–6717. https://doi.org/10.1007/s10570-022-04686-4

    Article  Google Scholar 

  122. Shi W, Wang Z, Song H et al (2022) High-sensitivity and extreme environment-resistant sensors based on PEDOT:PSS@PVA hydrogel fibers for physiological monitoring. ACS Appl Mater Interfaces 14(30):35114–35125. https://doi.org/10.1021/acsami.2c09556

    Article  Google Scholar 

  123. Mir A, Kumar A, Riaz U (2022) A short review on the synthesis and advance applications of polyaniline hydrogels. RSC Adv 12(30):19122–19132. https://doi.org/10.1039/d2ra02674k

    Article  Google Scholar 

  124. Hu C, Zhang Y, Wang X et al (2018) Stable, strain-sensitive conductive hydrogel with antifreezing capability, remoldability, and reusability. ACS Appl Mater Interfaces 10(50):44000–44010. https://doi.org/10.1021/acsami.8b15287

    Article  Google Scholar 

  125. Riaz U, Singh N, Rashnas Srambikal F et al (2022) A review on synthesis and applications of polyaniline and polypyrrole hydrogels. Polym Bull 80(2):1085–1116. https://doi.org/10.1007/s00289-022-04120-6

    Article  Google Scholar 

  126. Cheng KC, Zou L, Chang BB et al (2022) Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing. Adv Compos Hybrid Mater 5(4):2834–2846. https://doi.org/10.1007/s42114-022-00465-8

    Article  Google Scholar 

  127. Wei HG, Li A, Kong DS et al (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4(1):86–95. https://doi.org/10.1007/s42114-020-00201-0

    Article  Google Scholar 

  128. Abodurexiti A, Maimaitiyiming X (2022) Self-healing, anti-freezing hydrogels and its application in diversified skin-like electronic sensors. IEEE Sens J 22(13):12588–12594. https://doi.org/10.1109/jsen.2022.3157709

    Article  Google Scholar 

  129. Bai H, Chen D, Zhu H et al (2022) Photo-crosslinking ionic conductive PVA-SbQ/FeCl3 hydrogel sensors. Colloids Surf, A 648:129205. https://doi.org/10.1016/j.colsurfa.2022.129205

    Article  Google Scholar 

  130. Gong J-Y, Sun F-C, Pan Y-C et al (2022) Stretchable and tough PAANa/PEDOT:PSS/PVA conductive hydrogels for flexible strain sensors. Mater Today Commun 33:104324. https://doi.org/10.1016/j.mtcomm.2022.104324

    Article  Google Scholar 

  131. Zhao W, Zhang D, Yang Y et al (2021) A fast self-healing multifunctional polyvinyl alcohol nano-organic composite hydrogel as a building block for highly sensitive strain/pressure sensors. J Mater Chem A 9(38):22082–22094. https://doi.org/10.1039/d1ta05586k

    Article  Google Scholar 

  132. Zhao L, Zhang H, Guo Z et al (2022) Natural glycyrrhizic acid-tailored homogeneous conductive polyaniline hydrogel as a flexible strain sensor. ACS Appl Mater Interfaces 14(45):51394–51403. https://doi.org/10.1021/acsami.2c16129

    Article  Google Scholar 

  133. Song M, Yu H, Zhu J et al (2020) Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem Eng J 398:125547. https://doi.org/10.1016/j.cej.2020.125547

    Article  Google Scholar 

  134. Ma Y, Gao Y, Liu L et al (2020) Skin-contactable and antifreezing strain sensors based on bilayer hydrogels. Chem Mater 32(20):8938–8946. https://doi.org/10.1021/acs.chemmater.0c02919

    Article  Google Scholar 

  135. Sun X, Zhong W, Zhang Z et al (2022) Stretchable, self-healable and anti-freezing conductive hydrogel based on double network for strain sensors and arrays. J Mater Sci 57(26):12511–12521. https://doi.org/10.1007/s10853-022-07379-2

    Article  Google Scholar 

  136. Chen X, He M, Zhang X et al (2020) Metal-free and stretchable conductive hydrogels for high transparent conductive film and flexible strain sensor with high sensitivity. Macromol Chem Phys 221(10):2000054. https://doi.org/10.1002/macp.202000054

    Article  Google Scholar 

  137. Wang Y, Zhu Y, Xue Y et al (2020) Sequential in-situ route to synthesize novel composite hydrogels with excellent mechanical, conductive, and magnetic responsive properties. Mater Des 193:108759. https://doi.org/10.1016/j.matdes.2020.108759

    Article  Google Scholar 

  138. Li Y, Wang Y, Liu X et al (2021) Facilely prepared conductive hydrogels based on polypyrrole nanotubes. Chem Pap 75(10):5113–5120. https://doi.org/10.1007/s11696-021-01559-1

    Article  Google Scholar 

  139. Zhang L, Jiang D, Dong T et al (2020) Overview of ionogels in flexible electronics. Chem Rec 20(9):948–967. https://doi.org/10.1002/tcr.202000041

    Article  Google Scholar 

  140. Di X, Ma Q, Xu Y et al (2021) High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Mater Chem Front 5(1):315–323. https://doi.org/10.1039/d0qm00625d

    Article  Google Scholar 

  141. Gao Y, Peng J, Zhou M et al (2020) A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. J Mater Chem B 8(48):11010–11020. https://doi.org/10.1039/d0tb02250k

    Article  Google Scholar 

  142. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6(12):2583. https://doi.org/10.1039/b924290b

    Article  Google Scholar 

  143. Du H, Liu W, Zhang M et al (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144. https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  Google Scholar 

  144. Zhang D, Zhang M, Wang J et al (2022) Impedance response behavior and mechanism study of axon-like ionic conductive cellulose-based hydrogel strain sensor. Adv Compos Hybrid Mater 5(3):1812–1820. https://doi.org/10.1007/s42114-022-00437-y

    Article  Google Scholar 

  145. Huiqiang Wang ZL, Zuo M, Zeng X, Tang X, Yong Sun Lu, Lin. (2022) Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Carbohydr Polymers. https://doi.org/10.1016/j.carbpol.2021.119018

    Article  Google Scholar 

  146. Arkaban H, Barani M, Akbarizadeh MR et al (2022) Polyacrylic acid nanoplatforms: antimicrobial, tissue engineering, and cancer theranostic applications. Polymers (Basel) 14(6). https://doi.org/10.3390/polym14061259

  147. Yongzhi Liang XS, Lv Q, Shen Y, Liang H (2020) Fully physically cross-linked hydrogel as highly stretchable, tough, self-healing and sensitive strain sensors. Polymers (Basel). https://doi.org/10.1016/j.polymer.2020.123039

    Article  Google Scholar 

  148. Wang MX, Chen YM, Gao Y et al (2018) Rapid self-recoverable hydrogels with high toughness and excellent conductivity. ACS Appl Mater Interfaces 10(31):26610–26617. https://doi.org/10.1021/acsami.8b06567

    Article  Google Scholar 

  149. Liu R, Chen J, Luo Z et al (2022) Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors. React Funct Polym 172:105197. https://doi.org/10.1016/j.reactfunctpolym.2022.105197

    Article  Google Scholar 

  150. Qiao H, Qi P, Zhang X et al (2019) Multiple weak H-bonds lead to highly sensitive, stretchable, self-adhesive, and self-healing ionic sensors. ACS Appl Mater Interfaces 11(8):7755–7763. https://doi.org/10.1021/acsami.8b20380

    Article  Google Scholar 

  151. Zhan Y, Xing Y, Ji Q et al (2022) Strain-sensitive alginate/polyvinyl alcohol composite hydrogels with Janus hierarchy and conductivity mediated by tannic acid. Int J Biol Macromol 212:202–210. https://doi.org/10.1016/j.ijbiomac.2022.05.071

    Article  Google Scholar 

  152. Yang Zhou CW, Yang Y, Yang H, Wang S, Dai Z, Ji K, Jiang H, Xiaodong Chen, and Yi Long (2018) Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Electro Mater. https://doi.org/10.1002/adfm.201806220

    Article  Google Scholar 

  153. Jing X, Li H, Mi H-Y et al (2019) Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sens Actuators B Chem 295:159–167. https://doi.org/10.1016/j.snb.2019.05.082

    Article  Google Scholar 

  154. Ji N, Luo J, Zhang W et al (2022) A novel polyvinyl alcohol‐based hydrogel with ultra‐fast self‐healing ability and excellent stretchability based on multi dynamic covalent bond cross‐linking. Macromol Mater Eng 2200525. https://doi.org/10.1002/mame.202200525

  155. Liu R, Chen K, Liu H et al (2022) High performance conductive hydrogel for strain sensing applications and digital image mapping. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.2c15669

    Article  Google Scholar 

  156. Lian M, Sun J, Jiang D et al (2022) Triboelectric nanogenerator self-heating floor - possibility to achieve intelligence in the architecture. J Mater Chem A 10(45):24353–24361. https://doi.org/10.1039/d2ta06942c

    Article  Google Scholar 

  157. Chen G, Huang J, Gu J et al (2020) Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J Mater Chem A 8(14):6776–6784. https://doi.org/10.1039/d0ta00002g

    Article  Google Scholar 

  158. Shao L, Li Y, Ma Z et al (2020) Highly sensitive strain sensor based on a stretchable and conductive poly(vinyl alcohol)/phytic acid/NH(2)-POSS hydrogel with a 3D microporous structure. ACS Appl Mater Interfaces 12(23):26496–26508. https://doi.org/10.1021/acsami.0c07717

    Article  Google Scholar 

  159. Wen J, Tang J, Ning H et al (2021) Multifunctional ionic skin with sensing, UV-filtering, water-retaining, and anti-freezing capabilities. Adv Func Mater 31(21):2011176. https://doi.org/10.1002/adfm.202011176

    Article  Google Scholar 

  160. Sun P, Li Q (2022) Tension‐responsive graphene oxide conductive hydrogel with robust mechanical properties and high sensitivity for human motion monitoring. Macromol Mater Eng 2200529. https://doi.org/10.1002/mame.202200529

  161. Yu J, Dang C, Liu H et al (2020) Highly strong and transparent ionic conductive hydrogel as multifunctional sensors. Macromol Mater Eng 305(12):2000475. https://doi.org/10.1002/mame.202000475

    Article  Google Scholar 

  162. Wen N, Song T, Ji Z, et al (2021) Recent advancements in self-healing materials: mechanicals, performances and features. React Funct Polym 168. https://doi.org/10.1016/j.reactfunctpolym.2021.105041

  163. Wu H, Chen J, Kim J et al (2022) Facile preparation of transparent poly (γ-glutamic acid) modified poly (vinyl alcohol) hydrogels with high tensile strength and toughness. J Appl Polym Sci 139(21):52204. https://doi.org/10.1002/app.52204

    Article  Google Scholar 

  164. Chen Z, Luo J, Hu Y et al (2022) Fabrication of lignin reinforced hybrid hydrogels with antimicrobial and self-adhesion for strain sensors. Int J Biol Macromol 222:487–496. https://doi.org/10.1016/j.ijbiomac.2022.09.197

    Article  Google Scholar 

  165. Ke T, Zhao L, Fan X et al (2023) Rapid self-healing, self-adhesive, anti-freezing, moisturizing, antibacterial and multi-stimuli-responsive PVA/starch/tea polyphenol-based composite conductive organohydrogel as flexible strain sensor. J Mater Sci Technol 135:199–212. https://doi.org/10.1016/j.jmst.2022.06.032

    Article  Google Scholar 

  166. Sun P, Qiu M, Li G et al (2022) Artificial jelly channel inspired by the shark for sensing specific ions and environmental perturbation. Mater Today Chem 26:101047. https://doi.org/10.1016/j.mtchem.2022.101047

    Article  Google Scholar 

  167. Pan L, Han L, Liu H et al (2022) Flexible sensor based on Hair-like microstructured ionic hydrogel with high sensitivity for pulse wave detection. Chem Eng J 450:137929. https://doi.org/10.1016/j.cej.2022.137929

    Article  Google Scholar 

  168. Yagmurcukardes M, Qin Y, Ozen S et al (2020) Quantum properties and applications of 2D Janus crystals and their superlattices. Appl Phys Rev 7(1). https://doi.org/10.1063/1.5135306

  169. Wang Y, Liu S, Wang Q et al (2022) Nanolignin filled conductive hydrogel with improved mechanical, anti-freezing, UV-shielding and transparent properties for strain sensing application. Int J Biol Macromol 205:442–451. https://doi.org/10.1016/j.ijbiomac.2022.02.088

    Article  Google Scholar 

  170. Yan Y, He C, Zhang L et al (2023) Freeze-resistant, rapidly polymerizable, ionic conductive hydrogel induced by Deep Eutectic Solvent (DES) after lignocellulose pretreatment for flexible sensors. Int J Biol Macromol 224:143–155. https://doi.org/10.1016/j.ijbiomac.2022.10.111

    Article  Google Scholar 

  171. Xiao G, Wang Y, Zhang H et al (2021) Cellulose nanocrystal mediated fast self-healing and shape memory conductive hydrogel for wearable strain sensors. Int J Biol Macromol 170:272–283. https://doi.org/10.1016/j.ijbiomac.2020.12.156

    Article  Google Scholar 

  172. Du H, Wang J, Xu N et al (2022) Transparent, self-healable, shape memory poly(vinyl alcohol)/ionic liquid difunctional hydrogels assembled spontaneously from polymer solution. J Mol Liq 366:120226. https://doi.org/10.1016/j.molliq.2022.120226

    Article  Google Scholar 

  173. Han L, Zhou Q, Chen D et al (2022) Flexible sensitive hydrogel sensor with self-powered capability. Colloids Surf A 639:128381. https://doi.org/10.1016/j.colsurfa.2022.128381

    Article  Google Scholar 

  174. He P, Wu J, Pan X et al (2020) Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications. J Mater Chem A 8(6):3109–3118. https://doi.org/10.1039/c9ta12940e

    Article  Google Scholar 

  175. Jiang S, Xia L (2022) Bioinspired high-performance bilayer, pH-responsive hydrogel with superior adhesive property. Polymers (Basel) 14(20). https://doi.org/10.3390/polym14204425

  176. Zhang Y, MohebbiPour A, Mao J et al (2021) Lignin reinforced hydrogels with multi-functional sensing and moist-electric generating applications. Int J Biol Macromol 193(Pt A):941–947. https://doi.org/10.1016/j.ijbiomac.2021.10.159

    Article  Google Scholar 

  177. Wang X, Wang X, Pi M et al (2022) High-strength, highly conductive and woven organic hydrogel fibers for flexible electronics. Chem Eng J 428:131172. https://doi.org/10.1016/j.cej.2021.131172

    Article  Google Scholar 

  178. Tian J, Fan R, Zhang Z et al (2022) Flexible and biocompatible poly (vinyl alcohol)/multi-walled carbon nanotubes hydrogels with epsilon-near-zero properties. J Mater Sci Technol 131:91–99. https://doi.org/10.1016/j.jmst.2022.05.019

    Article  Google Scholar 

  179. Yousaf M, Shi HTH, Wang Y et al (2016) Novel pliable electrodes for flexible electrochemical energy storage devices: recent progress and challenges. Adv Energy Mater. https://doi.org/10.1002/aenm.201600490

    Article  Google Scholar 

  180. Chen J, Shi D, Yang Z et al (2022) A solvent-exchange strategy to develop stiff and tough hydrogel electrolytes for flexible and stable supercapacitor. J Power Sources 532:231326. https://doi.org/10.1016/j.jpowsour.2022.231326

    Article  Google Scholar 

  181. Guo G (2022) Facile synthesis of new conductive hydrogels for application in flexible all-solid-state supercapacitor. Int J Electrochem Sci 220528. https://doi.org/10.20964/2022.05.18

  182. Cao S, Zhao T, Li Y et al (2022) Fabrication of PANI@Ti3C2Tx/PVA hydrogel composite as flexible supercapacitor electrode with good electrochemical performance. Ceram Int 48(11):15721–15728. https://doi.org/10.1016/j.ceramint.2022.02.108

    Article  Google Scholar 

  183. Tao X-Y, Wang Y, Ma W-B et al (2021) Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor. J Mater Sci 56(28):16028–16043. https://doi.org/10.1007/s10853-021-06304-3

    Article  Google Scholar 

  184. Liu R, Liu H, Lyu T et al (2022) Tri‐state recyclable multifunctional hydrogel for flexible sensors. J Appl Polym Sci 139(39). https://doi.org/10.1002/app.52928

  185. Das Mahapatra S, Mohapatra PC, Aria AI et al (2021) Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Adv Sci 8(17). https://doi.org/10.1002/advs.202100864

  186. Wang, Z. L. (2021) From contact electrification to triboelectric nanogenerators. Rep Prog Phys 84(9). https://doi.org/10.1088/1361-6633/ac0a50

  187. Walden R, Aazem I, Babu A et al. (2023) Textile-triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem Eng J 451. https://doi.org/10.1016/j.cej.2022.138741

  188. Babu A, Aazem I, Walden R et al. (2023) Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem Eng J 452. https://doi.org/10.1016/j.cej.2022.139060

  189. Lian M, Sun J, Jiang D et al. (2023) Waterwheel-inspired high-performance hybrid electromagnetic-triboelectric nanogenerators based on fluid pipeline energy harvesting for power supply systems and data monitoring. Nanotechnology 34(2). https://doi.org/10.1088/1361-6528/ac97f1

  190. Parida K, Kumar V, Jiangxin W et al. (2017) Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv Mater 29(37). https://doi.org/10.1002/adma.201702181

  191. Wang Y, Zhang L, Lu A (2020) Highly stretchable, transparent cellulose/PVA composite hydrogel for multiple sensing and triboelectric nanogenerators. Journal of Materials Chemistry A 8(28):13935–13941. https://doi.org/10.1039/d0ta02010a

    Article  Google Scholar 

  192. Wolf MP, Salieb-Beugelaar GB, Hunziker P (2018) PDMS with designer functionalities—properties, modifications strategies, and applications. Prog Polym Sci 83:97–134. https://doi.org/10.1016/j.progpolymsci.2018.06.001

    Article  Google Scholar 

  193. Wang S, Zhang Y (2022) A functional triboelectric nanogenerator based on the LiCl/PVA hydrogel for cheerleading training. Mater Technol 37(13):2752–2757. https://doi.org/10.1080/10667857.2022.2073117

    Article  Google Scholar 

  194. Li G, Zhang J, Huang F et al (2021) Transparent, stretchable and high-performance triboelectric nanogenerator based on dehydration-free ionically conductive solid polymer electrode. Nano Energy 88:106289. https://doi.org/10.1016/j.nanoen.2021.106289

    Article  Google Scholar 

  195. Jing X, Li H, Mi HY et al (2020) Enhancing the performance of a stretchable and transparent triboelectric nanogenerator by optimizing the hydrogel ionic electrode property. ACS Appl Mater Interfaces 12(20):23474–23483. https://doi.org/10.1021/acsami.0c04219

    Article  Google Scholar 

  196. Luo X, Zhu L, Wang YC et al (2021) A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv Func Mater 31(38):2104928. https://doi.org/10.1002/adfm.202104928

    Article  Google Scholar 

  197. Xu W, Huang L-B, Wong M-C et al (2017) Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv Energy Mater 7(1):1601529. https://doi.org/10.1002/aenm.201601529

    Article  Google Scholar 

  198. Dai X, Long Y, Jiang B et al (2022) Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Res 15(6):5461–5468. https://doi.org/10.1007/s12274-022-4153-5

    Article  Google Scholar 

  199. Liu, P., Sun, N., Mi, Y., et al. (2021) Ultra-low CNTs filled high-performance fast self-healing triboelectric nanogenerators for wearable electronics. Compos Sci Technol 208. https://doi.org/10.1016/j.compscitech.2021.108733

  200. Long Y, Wang Z, Xu F et al (2022) Mechanically ultra-robust, elastic, conductive, and multifunctional hybrid hydrogel for a triboelectric nanogenerator and flexible/wearable sensor. Small. https://doi.org/10.1002/smll.202203956

    Article  Google Scholar 

  201. Qu M, Shen L, Wang J et al (2022) Superhydrophobic, humidity-resistant, and flexible triboelectric nanogenerators for biomechanical energy harvesting and wearable self-powered sensing. Acs Applied Nano Materials 5(7):9840–9851. https://doi.org/10.1021/acsanm.2c02026

    Article  Google Scholar 

  202. Zhou Z, Yuan W, Xie X (2022) A stretchable and adhesive composite hydrogel containing PEDOT:PSS for wide-range and precise motion sensing and electromagnetic interference shielding and as a triboelectric nanogenerator. Materials Chemistry Frontiers 6(22):3359–3368. https://doi.org/10.1039/d2qm00690a

    Article  Google Scholar 

Download references

Funding

This work was supported by the Heilongjiang Province Postdoctoral Funded Project (LBH-Q21019), Heilongjiang Province Natural Science Foundation (LH2020E087). This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/1444).

Author information

Authors and Affiliations

Authors

Contributions

Zijian Wu: conceived and designed the review. Qi Xu: prepared figures and visualization, wrote the main text. Wei Zhao and Mingpeng He: formal analysis and editing. Ning Guo: data collection and curation. Ling Weng, Zeinhom M. El-Bahy, and Mohamed M. Ibrahim: review and editing. Man Vir Singh: data collection and curation. Zhiping Lin: data collection and curation. Junna Ren, Manal F. Abou Taleb, and Mohamed M. Ibrahim: review and editing.

Corresponding authors

Correspondence to Zijian Wu, Ning Guo or Ling Weng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Wu, Z., Zhao, W. et al. Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview. Adv Compos Hybrid Mater 6, 203 (2023). https://doi.org/10.1007/s42114-023-00783-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00783-5

Keywords

Navigation