Skip to main content
Log in

Thermal Diffusivity, Heat Capacity, and Thermal Conductivity of Oil Reservoir Rock at High Temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The contact-free, laser-flash (LFA 457) apparatus was used to measure the thermal diffusivity (\(a\)) of oil reservoir rock samples over the temperature range from (303 to 723) K at atmospheric pressure. The measurements of the heat capacity (\(C_{P}\)) of the same oil reservoir rock sample were performed over a temperature range from (305 to 771) K using DSC 204 F1 technique. The combined expanded uncertainties of the temperature (\(T\)), thermal diffusivity (\(a\)) and heat capacity (\(C_{P}\)) measurements at the 95% confidence level with a coverage factor of k = 2 are estimated to be 20 mK, 3 % and 1 %, respectively. The measured thermal diffusivity and heat capacity data and their temperature dependence for oil reservoir rock were interpreted in terms of the damped harmonic oscillator (DHO) theory and modified multi-component Einstein model, respectively. Theoretically based correlations for the thermal diffusivity (DHO model) and heat capacity (multi-peak model based on vibrational spectra) were adopted to accurately represent the measured data. The measured values of \(a\) and \(C_{P}\) together with the density (ρ) data were used to calculate the derived values of thermal conductivity (\(\lambda = \rho C_{P} a\)) of the oil reservoir rock. The effect of phase changes (dehydration and thermal decomposition) in the intra pore fluids (oil and water) on thermal properties (thermal diffusivity, heat capacity, and thermal conductivity) of oil reservoir rock samples have been studied. We observed rapid increase of the heat capacity of the oil reservoir rock sample in distinct temperature ranges, around 323 K and 745 K. We attribute these irregularities in temperature dependence of thermal diffusivity and heat capacity to the dehydration (intensive vaporization of pore water) and the thermal decomposition of the residual heavy oil component (pyrolysis), which occurs at high temperatures. Based on the present measured thermophysical property data we have developed a model that simulated the heat transfer process in an oil reservoir where the thermal diffusivity of the reservoir media is considered as a function of temperature. The temperature variation at each point of the reservoir is calculated using a heat transfer equation with temperature dependent thermal properties of the reservoir media, i.e., the reservoir temperature profile, \(T\left( {x,t} \right)\), was simulated with thermophysical property changes of the reservoir media. We observed heat transfer alteration of the oil reservoir media due to temperature dependence of the thermal diffusivity. It was shown that taking into account the temperature dependence of the thermal diffusivity, considerably affects the heat transfer alteration of oil reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

source for various constant elapsed times): 1–10 days; 2–20 days; 3–50 days; 4–100 days; 5–500 days; and 6–1000 days

Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.M. Abdulagatov, Z.Z. Abdulagatova, S.N. Kallaev, A.G. Bakmaev, P.G. Ranjith, Int. J. Thermophys. 36, 658 (2015)

    Article  ADS  Google Scholar 

  2. Z.Z. Abdulagatova, S.N. Kallaev, Z.M. Omarov, A.G. Bakmaev, B.A. Grigor’ev, I.M. Abdulagatov, Geomech. Geophys. Geo-Energy Geo-Resour. 6, 8 (2020)

    Article  Google Scholar 

  3. I.M. Abdulagatov, Z.Z. Abdulagatova, S.N. Kallaev, A.G. Bakmaev, Z.M. Omarov, J. Therm. Anal. Calorimetry 142, 519 (2020)

    Article  Google Scholar 

  4. I.M. Abdulagatov, Z.Z. Abdulagatova, S.N. Kallaev, Z.M. Omarov, Geomech. Geophys. Geo-Energy Geo-Resour. 5, 65 (2019)

    Article  Google Scholar 

  5. I.M. Abdulagatov, Z.Z. Abdulagatova, S.N. Kallaev, Z.M. Omarov, P.G. Ranjith, in ed. By P.G. Ranjith, J. Zhao. International Conference on Geo-mechanics, Geo-energy and Geo-resources Australia, Melbourne, September 28–29, IC3G, vol. 493 (2016)

  6. M. Suhendra, M. Schmidt, U. Krause, Underground coal fire extinction model using coupled reactive heat and mass transfer model in porous media, in Excerpt from the Proceedings of the COMSOL, Conference Milan (2009)

  7. S. Schloemer, M. Teschner, J. Poggenburg, Ch. Seeger, Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in North China, Work Package 3210 Helicopter Geophysical Survey, 3220 Ground Geophysical Survey, Final Report Phase A Part B, BGR, (2007), pp.1–171.

  8. A.M. Hofmeister, Materials 14, 449 (2021)

    Article  ADS  Google Scholar 

  9. V. Noack, M. Scheck-Wenderoth, M. Cacace, Environ Earth Sci. 67, 1695 (2012)

    Article  Google Scholar 

  10. B. Norden, A. Förster, K. Behrends, K. Krause, L. Stecken, R. Meyer, Environ. Earth Sci. 67, 511 (2012)

    Article  Google Scholar 

  11. K. Kitano, K. Shin, N. Kinoshita, T. Okuno, J. Jpn. Soc. Eng. Geol. 29, 36 (1988)

    Article  Google Scholar 

  12. R.S. Wai, K.Y. Lo, R.K. Rowe, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 19, 211 (1982)

    Article  Google Scholar 

  13. Z. Zargar, S.M. Farouq-Ali, SPE J. 23, 117 (2017)

    Article  Google Scholar 

  14. Z. Zargar, S.M. Farouq-Ali, Fuel 233, 732 (2018)

    Article  Google Scholar 

  15. S.F. Ali, J. Pet. Sci. Eng. 37, 5 (2003)

    Article  Google Scholar 

  16. S.R. Upreti, A. Lohi, R.A. Kapadia, R. El-Haj, Energy Fuel 21, 1562 (2007)

    Article  Google Scholar 

  17. A. Adasani, B. Bai, J. Pet. Sci. Eng. 79, 10 (2011)

    Article  Google Scholar 

  18. A. Kovscek, J. Pet. Sci. Eng. 98, 130 (2012)

    Article  Google Scholar 

  19. A.G. Whittington, A.M. Hofmeister, P.I. Nabelek, Nature 458, 319 (2009)

    Article  ADS  Google Scholar 

  20. D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, J. Electron. Packag. 138, 040802 (2016)

    Article  Google Scholar 

  21. S. Min, J. Blumm, A. Lindemann, Thermochim. Acta 455, 46 (2007)

    Article  Google Scholar 

  22. U. Seipold, Scientific Technical Report STR01/13, Potsdam, GFZ (2001)

  23. U. Seipold, High Temp. High Pressures 34, 299 (2002)

    Article  Google Scholar 

  24. A.M. Hofmeister, Phys. Chem. Miner. 33, 45 (2006)

    Article  ADS  Google Scholar 

  25. A.M. Hofmeister, Phys. Earth Planet Interiors 170, 201 (2008)

    Article  ADS  Google Scholar 

  26. M. Pertermann, A.G. Whittington, A.M. Hofmeister, F.J. Spera, J. Zayak, Contrib. Miner. Petrol 155, 689 (2008)

    Article  ADS  Google Scholar 

  27. A.M. Hofmeister, in Infrared spectroscopy in geochemistry, exploration geochemistry, and remote sensing, vol. 135, ed. by P. King, M. Ramsey, G. Swayze (Mineralogical Association of Canada, Ottawa, 2004)

    Google Scholar 

  28. A.M. Hofmeister, A.G. Whittington, M. Pertermann, Contrib. Miner. Petrol 158, 381 (2009)

    Article  ADS  Google Scholar 

  29. U. Seipold, J. Geodyn. 20, 145 (1995)

    Article  Google Scholar 

  30. H.D. Vosteen, R. Schellschmidt, Phys. Chem. Earth 28, 499 (2003)

    Article  ADS  Google Scholar 

  31. M. Osako, E. Ito, A. Yoneda, Phys. Earth Planet Inter. 143–144, 311 (2004)

    Article  ADS  Google Scholar 

  32. M. Osako, A. Yoneda, E. Ito, Phys. Earth Planet Inter. 183, 229 (2010)

    Article  ADS  Google Scholar 

  33. M. Osako, E. Ito, High Pressure Sci. Technol. 7, 110 (1998)

    Article  Google Scholar 

  34. A. Tommasi, B. Gilbert, U. Seipold, D. Mainprice, Nature 411, 783 (2001)

    Article  ADS  Google Scholar 

  35. P.A. Geisting, A.M. Hofmeister, B. Wopenka, G.D. Gwanmesia, B.L. Jolliff, Earth Planet Sci. Lett. 218, 45 (2004)

    Article  ADS  Google Scholar 

  36. A.M. Hofmeister, Science 283, 1699 (1999)

    Article  ADS  Google Scholar 

  37. A.M. Hofmeister, Am. Mineral. 86, 1188 (2001)

    Article  ADS  Google Scholar 

  38. J.M. Branlund, A.M. Hofmeister, Phys. Chem. Miner. 34, 581 (2007)

    Article  ADS  Google Scholar 

  39. A.E. Ramazanova, I.M. Abdulagatov, P.G. Ranjith, J. Chem. Eng. Data 63, 1534 (2018)

    Article  Google Scholar 

  40. I.M. Abdulagatov, B.A. Grigor’ev, Z.Z. Abdulagatova, S.N. Kallaev, A.G. Bakmaev, Z.M. Omarov, Res Hydrocarbon Deposits Reserv. Syst. 46, 129 (2021)

    Google Scholar 

  41. P.A. Geisting, A.M. Hofmeister, Phys. Rev. B 65, 144305 (2002)

    Article  ADS  Google Scholar 

  42. A.M. Hofmeister, in Superlumes: Beyond Plate Tectonics, vol. 269, ed. by D.A. Yuen, S. Maruyama, S.I. Kavato, B.F. Windley (Springer, Dordrecht, 2007)

    Google Scholar 

  43. X. Yu, A.M. Hofmeister, J. Appl. Phys. 109, 033516 (2011)

    Article  ADS  Google Scholar 

  44. V. Vozár, W. Hohenauer, Int. J. Thermophys. 26, 1899 (2005)

    Article  ADS  Google Scholar 

  45. M. Pertermann, A.M. Hofmeister, Am. Mineral. 91, 1747 (2006)

    Article  ADS  Google Scholar 

  46. A.M. Hofmeister, M. Pertermann, Eur. J. Mineral. 20, 537 (2008)

    Article  ADS  Google Scholar 

  47. Y.S. Sudenko, Y.P. Barskii, L.P. Pavlov, in Thermophysical Properties of Substances and Materials, vol. 10, ed. by V.V. Sychev (GSSSD, Moscow, 1976), pp. 246–259

    Google Scholar 

  48. H. Kanamori, N. Fujii, H. Mizutani, J. Geophys. Res. 73, 595 (1968)

    Article  ADS  Google Scholar 

  49. R.G. Berman, T.H. Brown, Geochim. Cosmochim. Acta 45, 661 (1984)

    Article  ADS  Google Scholar 

  50. R.G. Berman, T.H. Brown, Contrib. Mineral. Petrol. 89, 168 (1985)

    Article  ADS  Google Scholar 

  51. A. Skauge, N. Fuller, L.G. Hepler, Thermchim. Acta 61, 139 (1983)

    Article  Google Scholar 

  52. P.I. Nabelek, A.M. Hofmeister, A.G. Whittington, Earth Planet. Sci. Lett. 317, 157 (2010)

    ADS  Google Scholar 

  53. M.K. Krupka, R.A. Robie, B.S. Hemingway, Am Mineral. 64, 86 (1979)

    Google Scholar 

  54. P.I. Nabelek, A.G. Whittington, A.M. Hofmeister, J. Geophys. Res. 115, 12417 (2010)

    Article  ADS  Google Scholar 

  55. D.W. Waples, J.S. Waples, Nat. Resour. Res. 13, 97 (2004)

    Article  Google Scholar 

  56. A.M. Hofmeister, H.K. Mao, Am. Mineral. 86, 622 (2001)

    Article  ADS  Google Scholar 

  57. R.A. Robie, B.S. Hemingway, in US Geological Survey Bulletin 2131, Washington, DC (1995)

  58. A.M. Hofmeister, Geochim. Cosmochim. Acta 68, 4721 (2004)

    Article  ADS  Google Scholar 

  59. J.H. Sass, T.H. Lachenbruch, T.H. Moses, P. Morgan, J. Geophys. Res. 97, 5017 (1992)

    Article  ADS  Google Scholar 

  60. D. Pribnow, C.F. Williams, J.H. Sass, R. Keating, Geophys. Res. Lett. 23, 391 (1996)

    Article  ADS  Google Scholar 

  61. J.M. Ziman, Electrons and Phonons. The Theory of Transport Phenomena in Solids (Clarendon Press, Oxford, 1962)

    MATH  Google Scholar 

  62. F.L. Madarasz, P.G. Klemens, Int. J. Thermophys. 8, 257 (1987)

    Article  ADS  Google Scholar 

  63. S.P. Clark, Geophys. Monogr. 13, 622 (1969)

    Google Scholar 

  64. U. Seipold, E. Huenges, Tectonophysics 291, 173 (1998)

    Article  ADS  Google Scholar 

  65. G. Buntebarth, in Equilibrium and kinetics in contact metamorphism. The Ballachulish igneous complex and its aureole, vol. 377, ed. by J. Topel, F. Seifert (Springer, New York, 1991)

    Google Scholar 

  66. P.G. Klemens, in Thermal Conductivity. ed. by R.P. Tye (Academic Press, London, 1969)

    Google Scholar 

  67. I.T. Kukkonen, J. Jokinen, U. Seipold, Surv. Geophys. 20, 33 (1999)

    Article  ADS  Google Scholar 

  68. C. Clauser, E. Huenges, J. Ahrens, Rock Physics & Phase Relations: A Handbook of Physical Constants, vol. 3 (AGU, Washington, DC, 1995), p. 105

    Google Scholar 

  69. U. Seipold, Tectonophysics 291, 161 (1998)

    Article  ADS  Google Scholar 

  70. A.M. Hofmeister, J.M. Branlund, M. Pertermann, Mineral Physics, vol. 2 (Elsevier, Dordrecht, 2007), p. 543

    Google Scholar 

  71. A.E. Beck, in Handbook of terrestrial heat flow density determination. ed. by R. Haenel, L. Rybach, L. Stegena (Kluwer, Dordrecht, 1988), pp. 87–124

    Chapter  Google Scholar 

  72. A.R. McBirney, J. Geophys. Res. 68, 6323 (1963)

    Article  ADS  Google Scholar 

  73. H. Hassanzadeh, Th. Harding, Fuel 178, 290 (2016)

    Article  Google Scholar 

  74. K.A. Lawal, J. Petrol. Explor. Prod. Technol. 10, 1565 (2020)

    Article  Google Scholar 

  75. G. Chunsheng, Q. Fangyi, L. Yong, N. Xianbo, Ch. Ziang, Z. Yong, Energy Procedia 105, 3936 (2017)

    Article  Google Scholar 

  76. P.J. Closmann, R.A. Smith, SPE J. 23, 575 (1983)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Foundation of Basic Research (RFBR) (Project # 19-08-00353)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, I.M., Abdulagatova, Z.Z., Grigor’ev, B.A. et al. Thermal Diffusivity, Heat Capacity, and Thermal Conductivity of Oil Reservoir Rock at High Temperatures. Int J Thermophys 42, 135 (2021). https://doi.org/10.1007/s10765-021-02878-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02878-x

Keywords

Navigation