Skip to main content

Advertisement

Log in

Thermal diffusivity of garnets at high temperature

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Thermal diffusivity (D) of garnets with diverse chemical compositions was measured using the laser-flash technique, which is accurate (±2%) and isolates the lattice component from direct radiative transfer. Temperatures ranged from ~290 to ~1,600 K (unless limited by melting). Seven synthetic (e.g., YAG, GGG) and 15 natural garnets with two types of ionic substitution [Ca3(Fe,Al)2Si3O12 and (Mg,Fe,Ca)3Al2Si3O12] and varying amounts of OH- were examined. Cation substitution or hydroxyl incorporation lowers D from end-member values. Thermal diffusivity is constant once the temperature (T) exceeds a critical value (T sat) of ~1,100 to 1,500 K. From ~290 K to T sat, the measurements are best represented by 1/D=A+BT+CT 2 where A, B, and C are constants. These constants vary little among diverse chemical compositions, suggesting that the oxygen sublattice controls heat transport. Higher order terms are needed only when T sat is low, such as Ant Hill garnet wherein 1/D=0.049403+0.0032299T−2.3992T 2×10−6+6.0168T 3×10−10(1/D in s/mm2; T in K). The mean free path (λ, computed from D and sound velocities) is slightly larger than the lattice parameter above T sat, in accord with phonon–phonon interactions requiring non-localized modes. At most temperatures, λ is nm-sized. Large values of λ are obtained by extrapolation to a few Kelvins, suggesting that boundary scattering can only be important at extremely cold temperatures. The observed behavior with T and chemical composition is consistent with the damped harmonic oscillator model. Phonon transport is best represented by inverse thermal diffusivity wherein 1/D goes as T n where n is between 1 and 3 up to ~200 K, depends on a quadratic or cubic polynomial at moderate T, but is constant above T sat. The predicted and observed temperature response of 1/D mimics the well-known form for heat capacity, in that acoustic modes control heat transport near cryogenic temperatures, optic phonons dominate above ambient temperature, and a limit analogous to that of Dulong and Petit is reached at very high temperature, due to full population of discrete phonon states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) The hydrous component in garnets: pyralspites. Am Mineral 69:1116–1126

    Google Scholar 

  • Amthauer G, Rossman GR (1998) The hydrous component in andradite garnet. Am Mineral 83:835–840

    Google Scholar 

  • Anderson OL, Isaak DG (1995) Elastic constants of mantle minerals at high temperature. In: Ahrens TJ (eds) A handbook of physical constants. American Geophysical Union, Washington DC, pp 64–96

    Google Scholar 

  • Andre S, Degiovanni A (1995) A theoretical study of the transient coupled conduction and radiation heat transfer in glass: phonic diffusivity measurements by the flash technique. Int J Heat Transfer 38:3401–3412

    Article  Google Scholar 

  • Armstrong JT (1988) Bence-Albee after 20 years: review of the accuracy of α-factor correction procedures for oxide and silicate minerals. In: Newbury DE (eds) Microbeam analysis. San Francisco Press Inc, San Francisco, pp 469–476

    Google Scholar 

  • Bass JD (1995) Elasticity of minerals, melts, and glasses. In: Ahrens TJ (eds) A handbook of physical constants. American Geophysical Union, Washington DC, pp 45–63

    Google Scholar 

  • Bertollotti M, Fabbri L, Sibilla C, Ferrari A, Sparvieri N (1988) Photothermal deflection applied to thermal diffusivity measurements of ceramic (ferrite) materials. J Phys D Appl Phys 21:S14–S16

    Article  Google Scholar 

  • Blumm J, Lemarchand S (2002) Influence of test conditions on the accuracy of laser flash measurements. High Temp High Pres 34:523–528

    Article  Google Scholar 

  • Blumm J, Opfermann J (2002) Improvement of the mathematical modeling of flash measurements. High Temp High Pres 34:515–521

    Article  Google Scholar 

  • Blumm J, Henderson JB, Nilson O, Fricke J (1997) Laser flash measurement of the phononic thermal diffusivity of glasses in the presence of ballistic radiative transfer. High Temp High Pres 29:555–560

    Article  Google Scholar 

  • Braeuer H, Dusza L, Schulz B (1992) New laser flash equipment LFA 427. Interceram 41:489–492

    Google Scholar 

  • Branlund J, Kameyama MC, Yuen DA, Kaneda Y (2000) Effects of temperature-dependent thermal diffusivity on shear instability in a viscoelastic zone: Implication for faster ductile faulting and earthquakes in the spinel stability field. Earth Planet Sci Lett 182:171–185

    Article  Google Scholar 

  • Buettner R, Zimanowski B, Blumm J, Hagermann L (1998) Thermal conductivity of a volcanic rock material (olivine–melilitite) in the temperature range between 298 and 1470 K. J Volcan Geothermal Res 80:293–302

    Article  Google Scholar 

  • Chai M, Brown JM, Slutsky LJ (1996) Thermal diffusivity of mantle minerals. Phys Chem Mineral 23:470–475

    Google Scholar 

  • Cowan DR (1963) Pulse method of measuring thermal diffusivity at high temperatures. J Appl Phys 34:926–927

    Article  Google Scholar 

  • Debye P (1914) Vortrage über die kinetische Theorie der Materie und der Electrizität. BG Teuber, Berlin

    Google Scholar 

  • Degiovanni A, Andre S, Maillet D (1994) Phonic conductivity measurement of a semi-transparent material. In: Tong TW (ed) Thermal conductivity 22. Technomic, Lancaster, pp 623–633

  • Dubuffet F, Yuen DA, Rainey ESG (2002) Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity. Nonlin Proc Geophy 9:1–13

    Article  Google Scholar 

  • Ehrenberg SN (1982) Petrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb, Navajo volcanic field. J Petrol 23:507–547

    Google Scholar 

  • Eucken A (1911) Über die Temperaturabhängigkeit der Wärmeleitfähigkeit fester Nichtmetalle. Ann Phys Leipzig 34:186–221

    Google Scholar 

  • Geiger CA, Stahl A, Rossman GR (1999) Raspberry-red grossular from Sierra de Cruces Range, Coahuila, Mexico. Eur J Mineral 11:1109–1113

    Google Scholar 

  • Giesting PA, Hofmeister AM (2002) Thermal conductivity of disordered garnets from infrared spectroscopy. Phys Rev B65: paper #144305 (15 pages)

  • Gerbault M (2000) At what stress level is the central Indian Ocean lithosphere buckling? Earth Planet Sci Lett 178:165–181

    Article  Google Scholar 

  • Gillet P, Fiquet G, Malezieux JM, Geiger CA (1992) High-pressure and high-temperature Raman spectroscopy of end-member garnets: pyrope, grossular and andradite. Eur J Mineral 4:651–664

    Google Scholar 

  • Hao H-Y, Newmann M, Enss C, Fleischmann A (2004) Contactless technique for thermal conductivity measurement at very low temperature. Rev Sci Instrum 75:2718–2725

    Article  Google Scholar 

  • Haselton HT Jr, Westrum EF Jr (1980) Low-temperature heat capacities of synthetic pyrope, grossular, and pyrope60grossular40. Geochim Cosmochim Acta 44:701–709

    Article  Google Scholar 

  • Haussühl S, Mateika D, Tolksdorf W (1976) Elasticshe und thermoelastische Konstanten von Y3Fe5O12−, Nd3Ga5O12−, und Sm3Ga5O12−Granaten. Z Natusforsch 31:390–392

    Google Scholar 

  • Henderson JB, Giblin F, Blumm J, Hagemann L (1998a) SRM 1460 series as a thermal diffusivity standard for laser flash instruments. Int Jour Thermophys 19:1647–1656

    Google Scholar 

  • Henderson JB, Hagemann L, Blumm J (1998b) Development of SRM 8420 series electrolytic iron as a thermal diffusivity standard. Netzsch Applications Laboratory Thermophysical Properties Section Report No. I-9E

  • Höfer M, Schilling FR (2002) Heat transfer in quartz, orthoclase, and sanidine at elevated temperature. Phys Chem Mineral 29:571–584

    Article  Google Scholar 

  • Hofmann R, Hahn O, Raether F, Mehling H, Fricke J (1997) Determination of thermal diffusivity in diathermic materials by the laser-flash technique. High Temp High Press 29:703–710

    Article  Google Scholar 

  • Hofmeister AM (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283:1699–1706

    Article  Google Scholar 

  • Hofmeister AM (2001) Thermal conductivity of spinels and olivines from vibrational spectroscopy at ambient conditions. Am Mineral 86:1188–1208

    Google Scholar 

  • Hofmeister AM (2004a) Enhancement of radiative transfer in the mantle by OH- in minerals. Phys Earth Planet Inter 146:483–485

    Article  Google Scholar 

  • Hofmeister AM (2004b) Thermal conductivity and thermodynamic properties from infrared spectroscopy. In: King P, Ramsey M, Swayze G (eds) Infrared spectroscopy in geochemistry, exploration geochemistry, and remote sensing. Mineralogical Association of Canada, Ottawa, pp 135–154

    Google Scholar 

  • Hofmeister AM (2004c) Physical properties of calcium aluminates from vibrational spectroscopy. Geochim Cosmochim Acta 68:4721–4726

    Article  Google Scholar 

  • Hofmeister AM (2005) The dependence of radiative transfer on grain-size, temperature, and pressure: implications for mantle processes. J Geodyn 40:51–72

    Article  Google Scholar 

  • Hofmeister AM, Chopelas A (1991) Vibrational spectra of end-member silicate garnets. Phys Chem Minerals 17:503–526

    Article  Google Scholar 

  • Hofmeister AM, Campbell KR (1992) Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets. J Appl Phys 72:638–646

    Article  Google Scholar 

  • Hofmeister AM, Fagan TJ, Campbell KM, Schaal RB (1996) Single-crystal IR spectroscopy of pyrope-almandine garnets with minor amounts of Mn and Ca. Am Mineral 81:418–428

    Google Scholar 

  • Hofmeister AM, Schaal RB, Campbell KM, Berry SL, Fagan TJ (1998) Prevalence and origin of birefringence in 48 garnets from the pyrope–almandine–grossular–spessartine quarternary. Am Mineral 83:1293–1301

    Google Scholar 

  • Horai K (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 76:1278–1308

    Article  Google Scholar 

  • Kachare A, Andermann G, Brantley LR (1972) Reliability of classical dispersion analysis of LiF and MgO reflectance data. J Phys Chem Solids 33:467–475

    Article  Google Scholar 

  • Kanamori H, Fujii N, Mizutani H (1968) Thermal diffusivity measurement of rock-forming minerals from 300 to 1100 K. J Geophys Res 73:595–603

    Article  Google Scholar 

  • Klein PH, Croft WJ (1967) Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°–300°K. J Appl Phys 38:1603–1607

    Article  Google Scholar 

  • Klemens PG (1969) Theory of the thermal conductivity of solids. In: Tye RP (eds) Thermal conductivity. Academic, New York, pp 1–68

    Google Scholar 

  • Krupka KM, Robie RA, Hemingway BS (1979) High-temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass. Am Mineral 64:86–101

    Google Scholar 

  • Liebfried G, Schlömann E (1954) Warmleitund in elektrische isolierenden Kristallen. Nach Ges Wissenschaften Goettingen Mathematik Physik K1:71–93

    Google Scholar 

  • McAloon BP, Hofmeister AM (1995) Single-crystal IR spectroscopy of the grossular–andradite binary. Am Mineral 80:1145–1156

    Google Scholar 

  • Madarasz FL, Klemens PG (1987) Reduction of lattice thermal conductivity due to point defects at intermediate temperatures. Int J Thermophys 8:257–262

    Article  Google Scholar 

  • Maldener J, Hosch A, Langer K, Rauch F (2003) Hydrogen in some natural garnets studied by nuclear reaction analysis and vibrational spectroscopy. Phys Chem Mineral 30:337–344

    Article  Google Scholar 

  • Meagher EP (1982) Silicate garnets. Rev Mineral 5:25–66

    Google Scholar 

  • Mehling H, Huatzinger G, Nilsson O, Fricke J, Hofmann R, Hahn O (1998) Thermal diffusivity of semitransparent materials determined by the laser-flash method: applying a new analytical model. Int J Thermophys 19:941–949

    Article  Google Scholar 

  • Mitra SS (1969) Infrared and Raman spectra due to lattice vibrations. In: Nudelman S, Mitra SS (eds) Optical properties of solids. Plenum Press, New York, pp 333–452

    Google Scholar 

  • Osako M (1997) Thermal diffusivity of olivine and garnet single-crystals. Bull Natl Sci Mus Tokyo Ser E 20:1–7

    Google Scholar 

  • Osako M, Ito E, Yoneda A (2004) Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure. Phys Earth Planet Int 143–144:311–320

    Article  Google Scholar 

  • Padture NP, Klemens PG (1997) Low thermal conductivity in garnets. J Am Ceram Soc 80:1018–1020

    Article  Google Scholar 

  • Parker JW, Jenkins JR, Butler PC, Abbott GI (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684

    Article  Google Scholar 

  • Peierls RE (1929) Zur kinetische Theorie der Warmeleitung in Kristallen. Ann der Physik Leipzig 3:1055–1101

    Article  Google Scholar 

  • Petrunin GI, Popov VG, Timoshechkin MI (1989) Temperature dependences of the heat capacity, diffusivity, and thermal conductivity of gallium garnets (300–700 K) (translated). Teplofisika Vysokikh Temp 27:1097–1102

    Google Scholar 

  • Pomeranchuk I (1943) Heat conductivity of dielectrics at high temperatures. J Phys USSR 7:197–201

    Google Scholar 

  • Reif F (1965) Fundamentals of statistical and thermal physics. McGraw Hill Book Co, New York

    Google Scholar 

  • Ross RG, Andersson P, Sundqvist B, Bäckström G (1984) Thermal conductivity of solids and liquids under pressure. Rep Prog Phys 47:1347–1402

    Article  Google Scholar 

  • Rossman GR (1988) Optical spectroscopy. Rev Mineral 18:207–254

    Google Scholar 

  • Rossman GR, Aines RD (1991) The hydrous components in garnets: grossular–hydrogrossular. Am Mineral 76:1153–1164

    Google Scholar 

  • Roufosse MC, Klemens P G (1974) Lattice thermal conductivity of minerals at high temperatures. J Geophys Res 79:703–705

    Article  Google Scholar 

  • Schaal RB (1991) I. Geometric modeling in reaction space of mineralogical diversity among eclogites. II. Constraints on shallow subduction of the Farallon plate from mantle xenoliths of the Colorado Plateau. PhD dissertation, University of California, Davis, 128 pp

  • Schilling FR (1999) A transient technique to measure thermal diffusivity at elevated temperatures. Eur J Mineral 11:1115–1124

    Google Scholar 

  • Seipold U (1998) Temperature dependence of thermal transport properties of crystalline rocks—a general law. Tectonophysics 291:161–171

    Article  Google Scholar 

  • Slack GA, Oliver DW (1971) Thermal conductivity of garnets and phonon scattering by rare-earth ions. Phys Rev B4:592–609

    Google Scholar 

  • Smyth J, McCormick T (1995) Crystallographic data for minerals. In: Ahrens TJ (eds) A handbook of physical constants. American Geophysical Union, Washington DC, pp 1–17

    Google Scholar 

  • Spitzer WG, Miller RC, Kleinman DA, Howarth LW (1962) Far-infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2. Phys Rev 126:1710–1721

    Article  Google Scholar 

  • Tan HP, Maestre B, Lallemand M. (1991) Transient and steady-state combined heat transfer in semitransparent materials subjected to a pulse or step irradiation. J Heat Transfer 113:166–173

    Article  Google Scholar 

  • Taran MN, Langer K (2001) Electronic absorption spectra of Fe2+ ions in oxygen-based rock-forming minerals at temperatures between 297 and 600 K. Phys Chem Minerals 28:199–210

    Article  Google Scholar 

  • Tequi C, Richet P, Robie RA, Hemingway BS, Neuville DR (1991) Melting and thermodynamic properties of pyrope (Mg3Al2Si3 O12). Geochim Cosmochim Acta 55:1005–1010

    Article  Google Scholar 

  • Van den Berg AP, Yuen DA, Rainey ESG (2004) The influence of variable viscosity on delayed cooling due to variable thermal conductivity. Phys Earth Planet Inter 142:283–295

    Article  Google Scholar 

  • Yanagawa TKB, Nakada M, Yuen DA (2005) The influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity. Earth Space Sci 57:15

    Google Scholar 

  • Ziman JM (1962) Electrons and phonons: the theory of transport phenomena in solids. Clarendon Press, Oxford, 550 pp (Ch 8 and 11)

Download references

Acknowledgements

Support was provided by NSF EAR 0132275 and 0206121. I thank Gretchen Benedix for providing microprobe analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Hofmeister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmeister, A.M. Thermal diffusivity of garnets at high temperature. Phys Chem Minerals 33, 45–62 (2006). https://doi.org/10.1007/s00269-005-0056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0056-8

Keywords

Navigation