Skip to main content
Log in

Derivation of the Conventional and a Generalized Form of Darcy’s Law from the Langevin Equation

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The conventional and a generalized form of Darcy’s law for the absolute permeability of porous media at low flow rates has been derived using the Langevin equation. It can account for the conventional viscous resistance and additionally a term referred to as thermal resistance. The latter is hypothesized to stem from the relationship between the mean and molecular random velocity along the mean flow direction. The key to note when using the Langevin equation as the starting point for the derivation is that the frictional resistance occurring are the same whether the fluid or the object is moving relative to each other. Hence, a spherical particle moving through a stagnant fluid will experience the same friction as a fluid flowing past a stagnant spherical particle. Experimental data for absolute permeability at different temperatures indicate a temperature dependency, which can be accounted for by the thermal resistance term, which so far has been neglected. A procedure for matching and predicting pressure variation and absolute permeability vs. temperature is described. The generalized form of Darcy’s law presented should be of interest in all sciences where fluid transport in porous media occurs at varying temperatures, e.g., in soil science, hydrology, geothermal, chemical and petroleum engineering. It has also been discussed in relation to the Kozeny–Carman equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data on request.

References

  • Anderson, W.G.: Wettability literature survey- part 1: rock/oil/brine Interactions and the effect of core handling on wettability. J. Petrol. Technol. 38, 10 (1986)

    Google Scholar 

  • Aruna, M.: The effects of temperature and pressure on absolute permeability of sandstones, Ph.D. dissertation Stanford University (1976)

  • Batchelor, G.K.: An introduction to fluid mechanics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Baudracco, J., Aoubouazza, M.: Permeability variations in Berea and Vosges sandstone submitted to cyclic temperature percolation of saline fluids. Geothermics 24(5–6), 661–677 (1995)

    Article  Google Scholar 

  • Bear, J.: Dynamics of fluids in porous media. Dover publications Inc., New York (1972)

    Google Scholar 

  • Brown, R.: A brief account of microscopical observations made in the months of June, July, and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag. 4, 161–173 (1828)

    Article  Google Scholar 

  • Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83(1), 34 (1951)

    Article  Google Scholar 

  • Carman, P.C.: Permeability of saturated sands, soils and clays. J. Agric. Sci. 29, 2 (1939)

    Article  Google Scholar 

  • Cassé, F.J., Ramey, H.R., Jr.: The effect of temperature and confining pressure on single-phase flow in consolidated rocks. J. Petrol. Technol. 31(8), 1051–1059 (1979)

    Article  Google Scholar 

  • Chapman, S., Cowling, T.G.: The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge (1953)

    Google Scholar 

  • Clotworthy, A.: Reinjection into low temperature loss zones. In: proceedings world geothermal congress, Japan May 28 – June 10 (2000)

  • Costa, A.: Permeability-porosity relationship: a reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 33, L02318 (2006). https://doi.org/10.1029/2005GL025134

    Article  Google Scholar 

  • Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  • Dey, S., Zeeshan Ali, S., Padhi, E.: Terminal fall velocity: the legacy of stokes from the perspective of fluvial hydraulics. Proc. R. Soc. A 475, 20190277 (2019)

    Article  Google Scholar 

  • Dullien, F.A.L.: Single phase flow through porous media and pore structure. Chem. Eng. J. 10, 1–34 (1975)

    Article  Google Scholar 

  • Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  • Erdim, E., Akgiray, Ö., Demir, I.: A revisit of pressure drop-flow rate correlations for packed beds of spheres. Powder Technol. 283, 488–504 (2015)

    Article  Google Scholar 

  • Ge, Z., Cahill, D.G., Braun, P.V.: Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96, 186101 (2006)

    Article  Google Scholar 

  • Gillespie, D.T.: Markov processes: an introduction for physical scientists. Academic Press Inc., London (1992)

    Google Scholar 

  • Grant, M.A., Bixley, P.F.: Geothermal reservoir engineering. Academic Press, London (2011)

    Google Scholar 

  • Grassia, P.: Dissipation, fluctuations, and conservation laws. Am. J. Phys. 69(2), 113 (2001)

    Article  Google Scholar 

  • Hasimoto, H.: On the periodic fundamental solutions of the Stokes equation and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317–328 (1959)

    Article  Google Scholar 

  • Hauge, E.H.: Kinetisk teori, NTH Trondheim Norway (1969)

  • Van Kampen, N.G.: Stochastic processes in physics and chemistry. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255 (1966)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid mechanics, 2nd edn. Pergamon Press, Revised (1987)

    Google Scholar 

  • Lemons, D. S., Gythiel, A.: Paul Langevin’s 1908 paper ‘‘On the Theory of Brownian Motion’’ [‘‘Sur la the´orie du mouvement brownien,’’ C. R. Acad. Sci. (Paris) 146 530–533 (1908)]. Am. J. Phys., 65, 11, 1079 – 1081 (1997)

  • Li, T., Raizen, M.G.: Brownian motion at short time scales. Ann. Phys. (berlin) 525(4), 281–295 (2013)

    Article  Google Scholar 

  • Neuman, S.P.: Theoretical derivation of Darcy’s law. Acta Mech. 25, 153 (1977)

    Article  Google Scholar 

  • Rosenbrand, E., Haugwitz, C., Munch Jacobsen, P.S., Kjøller, C., Fabricius, I.L.: The effect of hot water injection in sandstone permeability. Geothermics 50, 155 (2014)

    Article  Google Scholar 

  • Rosenbrand, E., Kjøller, C., Riis, J.F., Kets, F., Fabricius, I.L.: Different effects of temperature and salinity on permeability reduction by fines migration in Berea sandstone. Geothermics 53, 225–235 (2015)

    Article  Google Scholar 

  • Schekochihin, A.A.: Paper A1LectureNotes complied Sept. 2020, Oxford University (2020)

  • Schembre, J.M., Kovscek, A.R.: Mechanism of formation damage at elevated temperatures. J. Energy Res. Technol. 127, 171–180 (2005)

    Article  Google Scholar 

  • Siega, C., Grant, M., Bixley, P., Mannington, W.: Quantifying the effect of temperature on well injectivity. In: proceedings 36th New Zealand geothermal workshop Nov. 24 – 26, Auckland, New Zealand (2014)

  • Somerton, W.H.: Thermal properties and temperature-related behavior of rock/fluid systems. Developments in Petroleum Science, Elsevier, Amsterdam (1992)

    Google Scholar 

  • Standnes, D.C.: Implications of molecular thermal fluctuations on fluid flow in porous media and its relevance to absolute permeability. Energy Fuels 32, 8024 (2018)

    Article  Google Scholar 

  • Standnes, D.C.: Dissipation mechanisms for fluids and objects in relative motion described by the Navier-Stokes equation. ACS Omega (2021). https://doi.org/10.1021/acsomega.1c01033

    Article  Google Scholar 

  • Stokes, G.G.: On the numerical calculation of a class of definite integrals and infinite series. Trans. Camb. Philos. Soc. 9, 166 (1856)

    Google Scholar 

  • Sun, Y.Z., Xie, L.Z., He, B., Gao, C., Wang, J.: Effects of effective stress and temperature of sandstone from CO2-plume geothermal reservoir. J. Rock Mech. Geotech. Eng. 8, 819–827 (2016)

    Article  Google Scholar 

  • The Engineering ToolBox, https://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-d_596.html

  • Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36, 823 (1930)

    Article  Google Scholar 

  • Uribe-Patiño, J.A., Alzate-Espinosa, G.A., Arbeláez-Londoño, A.: Geomechanical aspects of reservoir thermal alteration: a literature review. J. Petrol. Sci. Eng. 152, 250–266 (2017)

    Article  Google Scholar 

  • Weinbrandt, R.M., Ramey, H.R., Jr., Cassé, F.J.: The effect of temperature on relative and absolute permeability of sandstones. SPE J. 15(5), 376 (1975)

    Google Scholar 

  • Whitaker, S.: Flow in porous media i: a theoretical derivation of Darcy’s Law. Transp. Porous Media 1, 3 (1986)

    Article  Google Scholar 

  • Zwanzig, R.: Nonequilibrium statistical mechanics. Oxford University Press, Oxford (2001)

    Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Only one author.

Corresponding author

Correspondence to Dag Chun Standnes.

Ethics declarations

Conflict of interest

Author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Standnes, D.C. Derivation of the Conventional and a Generalized Form of Darcy’s Law from the Langevin Equation. Transp Porous Med 141, 1–15 (2022). https://doi.org/10.1007/s11242-021-01707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01707-x

Keywords

Navigation