Skip to main content
Log in

Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A revised equation is proposed to represent and extrapolate the heat capacity of minerals as a function of temperature: C P=k0+k1 T −0.5+k2 T −2+k3 T −3 (where k1, k2≤0).

This equation reproduces calorimetric data within the estimated precision of the measurements, and results in residuals for most minerals that are randomly distributed as a function of temperature. Regression residuals are generally slightly greater than those calculated with the five parameter equation proposed by Haas and Fisher (1976), but are significantly lower than those calculated with the three parameter equation of Maier and Kelley (1932).

The revised equation ensures that heat capacity approaches the high temperature limit predicted by lattice vibrational theory (C P=3R+α2VT/β). For 16 minerals for which α and β have been measured, the average C Pat 3,000 K calculated with the theoretically derived equation ranges from 26.8±0.8 to 29.3±1.9 J/(afu·K) (afu = atoms per formula unit), depending on the assumed temperature dependence of α. For 91 minerals for which calorimetric data above 400 K are available, the average C Pat 3,000 K calculated with our equation is 28.3±2.0 J/(afu·K). This agreement suggests that heat capacity extrapolations should be reliable to considerably higher temperatures than those at which calorimetric data are available, so that thermodynamic calculations can be applied with confidence to a variety of high temperature petrologic problems.

Available calorimetric data above 250 K are fit with the revised equation, and derived coefficients are presented for 99 minerals of geologic interest. The heat capacity of other minerals can be estimated (generally within 2%) by summation of tabulated ‘oxide component’ C Pcoefficients which were obtained by least squares regression of this data base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson CT (1934) The heat capacities of magnesium, zinc, lead, manganese and iron carbonates at low temperatures. J Am Chem Soc 56:849–851

    Google Scholar 

  • Anderson CT (1936) The heat capacities of quartz, cristobalite and tridymite at low temperatures. J Am Chem Soc 58:568–570

    Google Scholar 

  • Barron THK, Berg WT, Morrison JA (1959) On the heat capacity of crystalline magnesium oxide. Proc R Soc London A250:70–83

    Google Scholar 

  • Bennington KO, Ferrante MJ, Stuve JM (1978) Thermodynamic data on the amphibole asbestos minerals amosite and crocido-lite. US Bur Mines Rep Inv 8265:30p

    Google Scholar 

  • Bennington KO, Beyer RP, Brown RR (1984) Thermodynamic properties of hedenbergite, a complex silicate of Ca, Fe, Mn, and Mg. US Bur Mines Rep Inv 8873:19p

  • Berman RG, Brown TH (1983) A revised equation for representation and high temperature extrapolation of the heat capacity of minerals. EOS 64:875

    Google Scholar 

  • Berman RG, Brown TH (1984) A thermodynamic model for multicomponent melts, with application to the system CaO-Al2O3-SiO2. Geochim Cosmochim Acta 45:661–678

    Google Scholar 

  • Berman RG, Brown TH, Engi M (1984) A thermodynamic data base for minerals: I. A linear programming analysis of experimental data in a ten component system. Proc IUPAC Conf Chem Therm: paper 180

  • Beyer RP, Ferrante MJ, Brown RR, Daut GE (1980) Thermodynamic properties of potassium metasilicate and disilicate. US Bur Mines Rep Inv 8410:21p

  • Birch F (1966) Compressibility; elastic constants. In: Clark SP (ed) Handbook of Physical Constants, Geol Soc Am Mem 97:97–173

  • Boltzmann L (1871) Einige allgemeine Sätze über Wärmegleichgewicht. Sitzungsber K Akad Wiss Wien 63:679–711

    Google Scholar 

  • Bonnickson KR (1954) High-temperature heat contents of calcium and magnesium ferrites. Am Chem Soc J 76:1480–1482

    Google Scholar 

  • Bonnickson KR (1955a) High temperature heat contents of aluminates of calcium and magnesium. J Phys Chem 59:220–221

    Google Scholar 

  • Bonnickson KR (1955b) High temperature heat contents of some titanates of aluminum, iron and zinc. Am Chem Soc J 77:2152–2154

    Google Scholar 

  • Coughlin JP, King EG, Bonnickson KR (1951) High-temperature heat contents of ferrous oxide, magnetite and ferric oxide. Am Chem Soc J 73:3891–3893

    Google Scholar 

  • Coughlin JP, O'Brien CJ (1957) High temperature heat contents of calcium orthosilicate. J Phys Chem 61:767–769

    Google Scholar 

  • Debye P (1912) Zur Theorie der spezifischen Wärmen. Ann Phys 39:789–839

    Google Scholar 

  • Ditmars DA, Douglas TB (1971) Measurement of the relative enthalpy of pure α-Al2O3 (NBS heat capacity and enthalpy standard reference material no. 720) from 273 to 1,173 K. J Res Nat Bur Stand 75A:401–420

    Google Scholar 

  • Einstein A (1907) Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann Phys 22:180–190

    Google Scholar 

  • Elsner von Gronow H, Schwiete HE (1933) Die spezifischen Wärmen von CaO, Al2O3, CaO·Al2O3, 3CaO·Al2O3, 2CaO·SiO2, 3CaO·SiO2, 2CaO·Al2O3·SiO2 von 20 bis 1,500 C. Z Anorg Allg Chem 216:185–195

    Google Scholar 

  • Ghiorso MS, Carmichael ISE, Moret LK (1979) Inverted hightemperature quartz. Unit cell parameters and properties of the alpha-beta inversion. Contrib Mineral Petrol 68:307–323

    Google Scholar 

  • Ghiorso MS, Carmichael ISE, Rivers ML, Sack RO (1983) The Gibbs free energy of mixing of natural silicate liquids: an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib Mineral Petrol 84:107–145

    Google Scholar 

  • Giauque WF, Archibald RC (1937) The entropy of water from the third law of thermodynamics. The dissociation pressure and calorimetric heat of the reaction Mg(OH)2 = MgO + H2O. The heat capacities of Mg(OH)2 and MgO from 20 to 300 K. Am Chem Soc J 59:561–569

    Google Scholar 

  • Gmelin E (1969) Thermal properties of alkaline-earth-oxides. Z Naturforsch 24A:1794–1800

    Google Scholar 

  • Gronvold F, Samuelson EJ (1975) Heat capacity and thermodynamic properties of α-Fe2O3 in the region 300–1,050 K. J Phys Chem Solids 36:249–256

    Google Scholar 

  • Gronvold F, Sveen A (1974) Heat capacity and thermodynamic properties of synthetic magnetite (Fe3O4) from 300 to 1,050 K. Ferrimagnetic transition and zero-point entropy. J Chem Thermodyn 6:859–872

    Google Scholar 

  • Gronvold F, Westrum EF Jr (1959) α-ferric oxide: low temperature heat capacity and thermodynamic functions. Am Chem Soc J 81:1780–1783

    Google Scholar 

  • Haas JL Jr, Fisher JR (1976) Simultaneous evaluation and correlation of thermodynamic data. Am J Sci 276:525–545

    Google Scholar 

  • Haas JL Jr, Robinson GR Jr, Hemingway BS (1981) Thermodynamic tabulations for selected phases in the system CaO-Al2O3-SiO2-H2O at 101.325 kPa (1atm) between 273.15 and 1,800 K. J Phys Chem Ref Data 10:576–669

    Google Scholar 

  • Haselton HT Jr (1979) Calorimetry of synthetic pyrope-grossular garnets and calculated stability relations. Doctoral Thesis, University of Chicago

  • Haselton HT Jr, Hemingway BS, Robie RA (1984) Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene. Am Mineral 69:481–489

    Google Scholar 

  • Haselton HT Jr, Hovis GL, Hemingway BS, Robie RA (1983) Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na, K short-range order and implications for two-feldspar thermometry. Am Mineral 68:398–413

    Google Scholar 

  • Haselton HT Jr, Westrum EF Jr (1980) Low-temperature heat capacities of synthetic pyrope, grossular, and pyrope60grossular40. Geochim Cosmochim Acta 44:701–709

    Google Scholar 

  • Hatton WE, Hildenbrand DL, Sinke GC, Stull DR (1959) The chemical thermodynamic properties of calcium hydroxide. Am Chem Soc J 81:5028–5030

    Google Scholar 

  • Helgeson HC, Delaney JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278A:229p

  • Hemingway BS, Krupka KM, Robie RA (1981) Heat capacities of the alkali feldspars between 350 and 1,000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1,400 K, and the reaction quartz + jadeite = analbite. Am Mineral 66:1202–1215

    Google Scholar 

  • Hemingway BS, Robie RA (1984a) Heat capacity and thermodynamic functions for gehlenite and staurolite: with comments on the Schottky anomaly in the heat capacity of staurolite. Am Mineral 69:307–318

    Google Scholar 

  • Hemingway BS, Robie RA (1984b) Thermodynamic properties of zeolites: low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates of the thermochemical properties of zeolitic water at low temperature. Am Mineral 69:692–700

    Google Scholar 

  • Hemingway BS, Robie RA, Fisher JR, Wilson WH (1977) Heat capacities of gibbsite, Al(OH)3, between 13 and 480 K and magnesite, MgCO3, between 13 and 380 K and their standard entropies at 298.15 K and the heat capacities of calorimetry conference benzoic acid between 12 and 316 K. J Res USGS 5:797–806

    Google Scholar 

  • Hemingway BS, Robie RA, Kittrick JA (1978) Revised values for the Gibbs free energy of formation of [Al(OH) 4 aq], diaspore, boehmite and bayerite at 298.15 K and 1 bar, the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples. Geochim Cosmochim Acta 42:1533–1543

    Google Scholar 

  • Hemingway BS, Robie RA, Kittrick JA, Grew ES, Nelen JA, London D (1984) The heat capacities of osumilite from 298.15 to 1,000 K, the thermodynamic properties of two natural chlorites to 500 K, and the thermodynamic properties of petalite to 1,800 K. Am Mineral 69:701–710

    Google Scholar 

  • Henderson CE, Essene EJ, Anovitz LM, Westrum EF Jr, Hemingway BS, Bowman JR (1983) Thermodynamics and phase equilibria of clinochlore, (Mg5Al)(Si3Al)O10(OH)8. EOS 64:466

    Google Scholar 

  • Holland TJB (1979) Experimental determination of the reaction paragonite = jadite + kyanite + H2O, and internally consistant thermodynamic data for part of the system Na2O-Al2O3-SiO2-H2O, with applications to eclogites and blueschists. Contrib Mineral Petrol 68:293–301

    Google Scholar 

  • Holland TJB (1981) Thermodynamic analysis of simple mineral systems. In: Newton RC, Navrotsky A, Wood BJ (ed) Thermodynamics of Minerals and Melts. Springer Berlin Heidelberg New York, pp 19–34

    Google Scholar 

  • Huckenholz HG, Holzl E, Lindhuber W (1975) Grossularite, its solidus and liguidus relations in the CaO-Al2O-SiO2-H2O system up to 10 kbar. Neues Jahrb Mineral Abh 124:1–46

    Google Scholar 

  • Jacobs GK, Kerrick DM, Krupka KM (1981) The high temperature heat capacity of natural calcite (CaCO3). Phys Chem Mineral 7:55–59

    Google Scholar 

  • Johnson GK, Flotow HE, O'Hare PAG (1982) Thermodynamic studies of zeolites: analcime and dehydrated analcime. Am Mineral 67:736–748

    Google Scholar 

  • Johnson GK, Flotow HE, O'Hare PAG (1983) Thermodynamic studies of zeolites: natrolite, mesolite and scolecite. Am Mineral 68:1134–1145

    Google Scholar 

  • Kelley KK (1939) The specific heats at low temperatures of crystalline ortho-, meta-, and disilicates of sodium. Am Chem Soc J 61:471–473

    Google Scholar 

  • Kelley KK (1943) Specific heats at low temperatures of magnesium orthosilicate and magnesium metasilicate. Am Chem Soc J 65:339–341

    Google Scholar 

  • Kelley KK (1960) Contributions to the data on theoretical metallurgy. XIII. High-temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds. US Bur Mines Bull 584:232p

  • Kelley KK, Naylor BF, Shomate CH (1946) Thermodynamic properties of manganese. US Bur Mines Tech Pap, 686:34p

  • Kelley KK, Todd SS, Orr RL, King EG, Bonnickson KR (1953) Thermodynamic properties of sodium-aluminum and potassium-aluminum silicates. US Bur Mines Rep Inv 4955, 21p

  • King EG (1954) Heat capacities at low temperatures and entropies at 298.16 K of calcium and magnesium ferrites. Am Chem Soc J 76:5849–5850

    Google Scholar 

  • King EG (1955a) Heat capacities at low temperatures and entropies at 298.16 K of crystalline calcium and magnesium aluminates. J Phys Chem 59:218–219

    Google Scholar 

  • King EG (1955b) Low-temperature heat capacties and entropies at 298.16 K of some titanates of aluminum, calcium, lithium and zinc. Am Chem Soc J 77:2150–2152

    Google Scholar 

  • King EG (1957) Low temperature heat capacities and entropies at 298.15 K of some crystalline silicates containing calcium. Am Chem Soc J 79:5437–5438

    Google Scholar 

  • King EG, Barany R, Weller WW, Pankratz LB (1967) Thermodynamic properties of forsterite and serpentine. US Bur Mines Rep Inv 6962:19p

  • King EG, Ferrante MJ, Pankratz LB (1975) Thermodynamic data for Mg(OH)2 (brucite). US Bur Mines Rep Inv 8041:13p

  • King EG, Orr RL, Bonnickson KR (1954) Low temperature heat capacity, entropy at 298.16 K, and high temperature heat content of sphene (CaTiSiO5). Am Chem Soc J 76:4320–4321

    Google Scholar 

  • King EG, Weller WW (1961a) Low temperature heat capacities and entropies at 298.15 K of diaspore, kaolinite, dickite, and halloysite. US Bur Mines Rep Inv 5810:6p

  • King EG, Weller WW (1961b) Low temperature heat capacities and entropies at 298.15 K of some sodium-and calcium-aluminum silicates. US Bur Mines Rep Inv 5855:8p

    Google Scholar 

  • Kiseleva IA, Topor ND, Andreyenko ED (1974) Thermodynamic parameters of minerals of the epidote group. Geochem Int 11:389–398

    Google Scholar 

  • Kiseleva IA, Topor ND, Melchakova LV (1972) Experimental determination of heat content and heat capacity in grossular, andradite, and pyrope. Geokhimiya II:1372–1379

    Google Scholar 

  • Ko HC, Ferrante MJ, Stuve JM (1977) Thermophysical properties of acmite. Proc 7th Symp Thermophys Properties. Am Soc Mech Eng:392–395

  • Kobayashi K (1950) The heat capacities of inorganic substances at high temperatures. Part II. The heat capacity of calcium hydroxide. Sci Rep Tohoku Univ 34:153–159

    Google Scholar 

  • Kobayashi K (1951) The heat capacities of inorganic substances at high temperatures. Part IV: The heat capacity of synthetic aragonite (calcium carbonate). Sci Rep Tohoku Univ 35:111–118

    Google Scholar 

  • Kolesnik YN, Nogteva VV, Arkhipenko DK, Orekhov BA, Paukov IY (1979) Thermodynamics of pyrope-grossular solid solutions and the specific heat of grossular at 13–300 K. Geochem Int 16:57–64

    Google Scholar 

  • Krupka KM, Robie RA, Hemingway BS (1979) High-temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass. Am Mineral 64:86–101

    Google Scholar 

  • Krupka MK, Robie RA, Hemingway BS, Kerrick DM, Ito J (1985a) Low-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, enstatite, bronzite, and wollastonite. Am Mineral (in press)

  • Krupka MK, Robie RA, Hemingway BS, Kerrick DM, Ito J (1985b) High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite, and wollastonite. Am Mineral (in press)

  • Lander JJ (1951) Experimental heat contents of SrO, BaO, CaO, BaCO3 and SrCO3 at high temperatures. Dissociation pressures of BaCO3 and SrCO3. Am Chem Soc J 73:5794–5797

    Google Scholar 

  • Lane DL, Ganguly J (1980) Al2O3 solubility in orthopyroxene in the system MgO-Al2O3-SiO2: A reevaluation, and mantle geotherm. J Geophys Res 85:6963–6972

    Google Scholar 

  • Maier CG, Kelley KK (1932) An equation for the representation of high temperature heat content data. Am Chem Soc J 54:3243–3246

    Google Scholar 

  • Mraw SC, Naas DF (1979) The measurement of accurate heat capacities by differential scanning calorimetry. Comparison of DSC results on pyrite (100 to 800 K) with literature values from precision adiabatic calorimetry. J Chem Thermodyn 11:567–584

    Google Scholar 

  • Naylor BF (1945a) High-temperature heat contents of sodium metasilicate and sodium disilicate. Am Chem Soc J 67:466–467

    Google Scholar 

  • Naylor BF (1945b) High-temperature heat contents of Na2TiO3, Na2Ti2O5 and Na2Ti3O7. J Am Chem Soc 67:2120–2122

    Google Scholar 

  • Naylor BF (1946) High-temperature heat contents of TiO, Ti2O3, Ti3O5, and TiO2. Am Chem Soc J 68:1077–1080

    Google Scholar 

  • Naylor BF, Cook OA (1946) High temperature heat contents of the metatitanites of calcium, iron, and magnesium. J Am Chem Soc 68:1003–1005

    Google Scholar 

  • Newton RC, Thompson AB, Krupka KM (1979) Heat capacity of synthetic Mg3Al2Si3O12 from 350 to 1,000 K and the entropy of pyrope. EOS 58:523

    Google Scholar 

  • O'Neill MJ (1966) Measurement of specific heat functions by differential scanning calorimetry. Anal Chem 38:1331–1336

    Google Scholar 

  • Openshaw RE, Hemingway BS, Robie RA, Waldbaum DR, Krupka KM (1976) The heat capacity at low temperatures and entropies at 298.15 K of low albite, analbite, microcline, and sanidine. J Res USGS 4:195–204

    Google Scholar 

  • Orr RL (1953) High temperature heat contents of magnesium orthosilicate and ferrous orthosilicate. Am Chem Soc J 75:528–529

    Google Scholar 

  • Pankratz LB (1964) High-temperature heat contents and entropies of muscovite and dehydrated muscovite. US Bur Mines Rep Inv 6371:6p

  • Pankratz LB (1968) High-temperature heat contents and entropies of dehydrated analcite, kaliophilite, and leucite. US Bur Mines Rep Inv 7073:8p

  • Pankratz LB, Kelley KK (1963) Thermodynamic data for magnesium oxide (periclase). US Bur Mines Rep Inv 6295: 5p

  • Pankratz LB, Kelley KK (1964a) High-temperature heat contents and entropies of andalusite, kyanite, and sillimanite. US Bur Mines Rep Inv 6370:7p

  • Pankratz LB, Kelley KK (1964b) High-temperature heat contents and entropies of akermanite, cordierite, gehlenite, and merwinite. US Bur Mines Rep Inv 6555:7p

  • Pankratz LB, Weller WW, Kelley KK (1963) Low-temperature heat capacity and high temperature heat content of mullite. US Bur Mines Rep Inv 6287:7p

  • Perkins D III, Essene EJ, Westrum EF Jr, Wall VJ (1979) New thermodynamic data for diaspore and their application to the system Al2O3-SiO2-H2O. Am Mineral 64:1080–1090

    Google Scholar 

  • Perkins D III, Westrum EF Jr, Essene EJ (1980) The thermodynamic properties and phase relations of some minerals in the system CaO-Al2O3-SiO2-H2O. Geochim Cosmochim Acta 44:61–84

    Google Scholar 

  • Petit AT, Dulong PL (1819) Recherches sur quelques points importants de la theorie de la chaleur. Ann Chim Phys 10:395–413

    Google Scholar 

  • Raz U (1983) Thermal and volumetric measurements on quartz and other substances at pressures up to 6 kbars and temperatures up to 700° C. Doctoral Thesis, Swiss Fed Inst Tech Zurich 7386

  • Richet P, Bottinga Y (1982) Modèles de calcul des capacités calorifigues des verres et des liguides silicatés. CR Acad Sci 295, 1121–1124

    Google Scholar 

  • Richet P, Bottinga Y, Denielou L, Petitet JP, Tequi C (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1,000 and 1,800 K and a review from 0 to 2,000 K. Geochim Cosmochim Acta 46:2639–2658

    Google Scholar 

  • Richet P, Bottinga Y, Tequi C (1984) Heat capacity of sodium silicate liquids. J Am Ceram Soc 88:C6-C8

    Google Scholar 

  • Robie RA, Bethke PM, Beardsley KM (1967) Selected x-ray crystallographic data, molar volumes, and densities of minerals and related substances. USGS Bull 1248:87p

    Google Scholar 

  • Robie RA, Finch CB, Hemingway BS (1982a) Heat capacity and entropy of fayalite (Fe2SiO4) between 5.1 and 383 K: comparison of calorimetric and equilibrium values for the QFM buffer reaction. Am Mineral 67:463–469

    Google Scholar 

  • Robie RA, Haselton HT Jr, Hemingway BS (1984) Heat capacities and entropies of rhodochrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K. Am Mineral 69:349–357

    Google Scholar 

  • Robie RA, Hemingway BS (1984) Entropies of kyanite, andalusite, and sillimanite: additional constraints on the pressure and temperature of the Al2SiO5 triple point. Am Mineral 69:298–306

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. USGS Bull 1452:456p

  • Robie RA, Hemingway BS, Takei H (1982b) Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Am Mineral 67:470–482

    Google Scholar 

  • Robie RA, Hemingway BS, Wilson WH (1976) The heat capacities of calorimetry conference copper and of muscovite KAl2(Al-Si3)O10(OH)2, pyrophyllite Al2Si4O10(OH)2, and illite K3(Al7Mg)(Si14Al2)O40(OH)8 between 15 and 375 K and their standard entropies at 298.15 K. J Res USGS 4:631–644

    Google Scholar 

  • Robie RA, Hemingway BS, Wilson WH (1978) Low-temperature heat capacities and entropies of feldspar glasses and of anorthite. Am Mineral 63:109–123

    Google Scholar 

  • Robie RA, Stout JW (1963) Heat capacity from 12 to 305 K and entropy of talc and tremolite. J Phys Chem 67:2252–2256

    Google Scholar 

  • Robinson GR Jr, Haas JL Jr (1983) Heat capacity, relative enthalpy, and calorimetric entropy of silicate minerals: an empirical method of prediction. Am Mineral 68:541–553

    Google Scholar 

  • Robinson GR Jr, Haas JL Jr, Schafer CM, Haselton HT Jr (1982) Thermodynamic and thermophysical properties of selected phases in the MgO-SiO2-H2O-CO2, CaO-Al2O3-SiO2-H2O-CO2, Fe-FeO-Fe2O3-SiO2 chemical systems, with special emphasis on the properties of basalts and their mineral components. USGS Open-file Rep 83-79:429p

  • Sharp ZD, Metz GW, Anovitz LM, Essene EJ, Westrum EF Jr, Valley JW (1983) The heat capacity and phase equilibria of monticellite. EOS 64:466

    Google Scholar 

  • Shomate CH (1946) Heat capacities at low temperatures of the metatitanates of iron, calcium and magnesium. Am Chem Soc J 68:964–966

    Google Scholar 

  • Shomate CH (1947) Heat capacities at low temperatures of titanium dioxide (rutile and anatase). Am Chem Soc J 69:218–219

    Google Scholar 

  • Shomate CH, Cook OA (1946) Low-temperature heat capacities and high-temperature heat contents of Al2O3·3H2O and Al2O3·H2O. Am Chem Soc J 68:2140–2140

    Google Scholar 

  • Skinner BJ (1966) Thermal expansion. In: Clark SP (ed) Handbook of Physical Constants, Geol Soc Am Mem 97:75–96

  • Southard JC (1941) A modified calorimeter for high temperatures. The heat content of silica, wollastonite and thorium dioxide above 25°. Am Chem Soc J 63:3142–3146

    Google Scholar 

  • Staveley LAK, Linford RG (1969) The heat capacity and entropy of calcite and aragonite, and their interpretation. J Chem Thermodyn 1:1–11

    Google Scholar 

  • Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib Mineral Petrol 86:131–148

    Google Scholar 

  • Stebbins JF, Carmichael ISE, Weill DE (1983) The high temperature liquid and glass heat contents and the heats of fusion of diopside, albite, sanidine and nepheline. Am Mineral 68:717–730

    Google Scholar 

  • Stout JW, Robie RA (1963) Heat capacity from 11 to 300 K, entropy, and heat of formation of dolomite. J Phys Chem 67:2248–2252

    Google Scholar 

  • Sumino Y, Anderson OL, Suzuki I (1983) Temperature coefficients of elastic constants of single crystal MgO between 80 and 1,300 K. Phys Chem Min 9:38–47

    Google Scholar 

  • Thompson AB, Wennemer M (1979) Heat capacities and inversions in tridymite, cristobalite, and tridymite-cristobalite mixed phases. Am Mineral 64:1018–1026

    Google Scholar 

  • Todd SS (1951) Low-temperature heat capacities and entropies at 298.16 K of crystalline calcium orthosilicate, zinc orthosilicate and tricalcium silicate. Am Chem Soc J 73:3277–3278

    Google Scholar 

  • Todd SS (1952) Low temperature heat capacities and entropies at 298.16 K of magnesium orthotitanate and magnesium dititanate. Am Chem Soc J 74:4669–4670

    Google Scholar 

  • Todd SS, Bonnickson KR (1951) Low temperature heat capacities and entropies at 298.16 K of ferrous oxide, manganese oxide and vanadium monoxide. J Am Chem Soc 73:3894–3895

    Google Scholar 

  • Todd SS, King EG (1953) Heat capacities at low temperatures and entropies at 298.16 K of titanomagnetite and ferric titanate. Am Chem Soc J 75:4547–4549

    Google Scholar 

  • Victor AC, Douglas TB (1963) Themodynamic properties of magnesium oxide and beryllium oxide from 298 to 1,200 K. J Res Nat Bur Stand 67A:325–329

    Google Scholar 

  • Wagner H (1932) Zur Thermochemie der Metasilikate des Calciums und Magnesiums und des Diopsids. Z Anorg Allg Chem 208:1–22

    Google Scholar 

  • Waldbaum DR (1973) The configurational entropies of Ca2Mg-Si2O7-Ca2SiAl2O7 melilites and related minerals. Contrib Mineral Petrol 39:33–54

    Google Scholar 

  • Weller WW, Kelley KK (1963) Low-temperature heat capacities and entropies at 298.15 K of akermanite, cordierite, gehlenite, and merwinite. US Bur Mines Rep Inv 6343:7p

  • Westrum EF Jr, Essene EJ, Perkins D III (1979) Thermophyical properties of the garnet, grossular: Ca3Al2Si3O12. J Chem Thermodyn 11:57–66

    Google Scholar 

  • Westrum EF, Gronvold F (1969) Magnetite (Fe3O4). Heat capacity and thermodynamic properties from 5 to 350 K, low-temperature transition. J Chem Thermodyn 1:543–557

    Google Scholar 

  • White WP (1919) Silicate specific heats. Am J Sci 47:1–21

    Google Scholar 

  • Winter JK, Ghose S (1979) Thermal expansion and high temperature crystal chemistry of the Al2SiO5 polymorphs. Am Mineral 64:573–586

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berman, R.G., Brown, T.H. Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation. Contr. Mineral. and Petrol. 89, 168–183 (1985). https://doi.org/10.1007/BF00379451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379451

Keywords

Navigation