Skip to main content
Log in

Sensitivity of 3D thermal models to the choice of boundary conditions and thermal properties: a case study for the area of Brandenburg (NE German Basin)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Based on newly available data of both, the structural setting and thermal properties, we compare 3D thermal models for the area of Brandenburg, located in the Northeast German Basin, to assess the sensitivity of our model results. The structural complexity of the basin fill is given by the configuration of the Zechstein salt with salt diapirs and salt pillows. This special configuration is very relevant for the thermal calculations because salt has a distinctly higher thermal conductivity than other sediments. We calculate the temperature using a FEMethod to solve the steady state heat conduction equation in 3D. Based on this approach, we evaluate the sensitivity of the steady-state conductive thermal field with respect to different lithospheric configurations and to the assigned thermal properties. We compare three different thermal models: (a) a crustal-scale model including a homogeneous crust, (b) a new lithosphere-scale model including a differentiated crust and (c) a crustal-scale model with a stepwise variation of measured thermal properties. The comparison with measured temperatures from different structural locations of the basin shows a good fit to the temperature predictions for the first two models, whereas the third model is distinctly colder. This indicates that effective thermal conductivities may be different from values determined by measurements on rock samples. The results suggest that conduction is the main heat transport mechanism in the Brandenburg area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bayer U, Scheck M, Koehler M (1997) Modeling of the 3D thermal field in the northwest German Basin. Geol Rundsch 86:241–251

    Article  Google Scholar 

  • Beer H (1996) Temperaturmessungen in Tiefbohrungen - Repräsentanz und Möglichkeit einer näherungsweisen Korrektur. Brandenburgische Geowissenschaftliche Beiträge 3:28–34

    Google Scholar 

  • Beer H, Hurtig E (1999) Das geothermische Feld in Brandenburg. Brandenburgische Geowissenschaftliche Beiträge 6:57–68

    Google Scholar 

  • Benek R, Kramer W, McCann T, Scheck M, Negendank JFW, Korich D, Huebscher HD, Bayer U (1996) Permo-carboniferous magmatism of the Northeast German Basin. Tectonophysics 266:379–404

    Article  Google Scholar 

  • Cacace M, Scheck-Wenderoth M (2010) Modeling the thermal field and the impact of salt structures in the North East German Basin. World Geothermal Congress, Bali, Indonesia

    Google Scholar 

  • Cacace M, Kaiser BO, Lewerenz B, Scheck-Wenderoth M (2010) Geothermal energy in sedimentary basins: what we can learn from regional numerical models. Chemie der Erde-Geochemistry 70:33–46

    Article  Google Scholar 

  • Čermák VH, Huckenholz HG, Rybach L, Schmid R, Schopper JR, Schuch M, Stöffler D, Wohlenberg J (1982) Physical properties of rocks. In: Augenheister G (ed) Landolt-Börnstein. New series. Springer, Berlin, Heidelberg, New York, pp 1–373

    Google Scholar 

  • Förster A (2001) Analysis of borehole temperature data in the Northeast German Basin: continuous logs versus bottom-hole temperatures. Pet Geosci 7:241–254

    Article  Google Scholar 

  • Fowler CMR (1996) The solid earth. Cambridge University Press, Cambridge

    Google Scholar 

  • Fuchs S, Förster A (2010) Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chemie Der Erde-Geochemistry 70:13–22

    Article  Google Scholar 

  • Hofmeister AM (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283:1699–1706

    Article  Google Scholar 

  • Huenges E (ed) (2010) Geothermal energy systems. WILEY-VCH, Weinheim

    Google Scholar 

  • Hurtig E (1975) Untersuchungen zur Wärmeflußverteilung in Europa. Gerlands Beiträge zur Geophysik 84:247–260

    Google Scholar 

  • Hurtig E, Oelsner Ch (1979) The heat flow field on the territory of the German Democratic Republik. In: Cermak V, Rybach L (eds) Terrestrial heat flow in europe. Springer, Berlin, pp 186–190

    Chapter  Google Scholar 

  • Hurtig E, Čermák V, Haenel R, Zui V (1992) Geothermal Atlas of Europe. H Haak Verlagsgesellschaft, Gotha

    Google Scholar 

  • Kaiser BO, Cacace M, Scheck-Wenderoth M, Lewerenz B (2011) Characterization of main heat transport processes in the Northeast German Basin: constraints from 3-D numerical models. Geochem Geophys Geosyst 12:17. doi:10.1029/2011GC003535

    Article  Google Scholar 

  • Lampe C, Person M (2002) Advective cooling within sedimentary rift basins—application to the Upper Rhinegraben (Germany). Mar Petrol Geol 19:361–375

    Article  Google Scholar 

  • Maystrenko YP, Scheck-Wenderoth M (2011) Shallow and deep controls on the thermal structure of basins—predictions from data-based large-scale 3D models. In: Poster, EGU general Assembly 2011, vol 13, EGU2011-3598

  • Mottaghy D, Pechnig R, Vogt C (2011) The geothermal project Den Haag: 3D numerical models for temperature prediction and reservoir simulation. Geothermics 40:199–210

    Google Scholar 

  • Noack V, Cherubini Y, Scheck-Wenderoth M, Lewerenz B, Höding T, Simon A, Moeck I (2010) Assessment of the present-day thermal field (NE German Basin)-inferences from 3D modelling. Chemie Der Erde-Geochemistry 70:47–62

    Article  Google Scholar 

  • Norden B, Förster A (2006) Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin. AAPG Bull 90:939–962

    Article  Google Scholar 

  • Norden B, Förster A, Balling N (2008) Heat flow and lithospheric thermal regime in the Northeast German Basin. Tectonophysics 460:215–229

    Article  Google Scholar 

  • Ollinger D, Baujard C, Kohl T, Moeck I (2010) Distribution of thermal conductivities in the Gross Schonebeck (Germany) test site based on 3D inversion of deep borehole data. Geothermics 39:46–58

    Article  Google Scholar 

  • Ondrak R, Wenderoth F, Scheck M, Bayer U (1998) Integrated geothermal modeling on different scales in the Northeast German basin. Geol Rundsch 87:32–42

    Article  Google Scholar 

  • Petitta M, Primavera P, Tuccimei P, Aravena R (2011) Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): a geochemical and isotope approach. Environ Earth Sci 63:11–30

    Article  Google Scholar 

  • Scheck M (1997) Dreidimensionale Struckturmodellierung des Nordostdeutschen Beckens unter Einbeziehung von Krustenmodellen (Dissertation Thesis, Freie Universität Berlin). Scientific Technical Report STR97/10, pp 1–126

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169

    Article  Google Scholar 

  • Scheck M, Bayer U, Lewerenz B (2003) Salt redistribution during extension and inversion inferred from 3D backstripping. Tectonophysics 373:55–73

    Article  Google Scholar 

  • Scheck-Wenderoth M, Maystrenko Y (2008) How warm are passive continental margins? A 3-D lithosphere-scale study from the Norwegian margin. Geology 36:419–422

    Article  Google Scholar 

  • Scheck-Wenderoth M, Krzywiec P, Zühlke R, Maystrenko Y, Froitzheim N (2008) Permian to cretaceous tectonics. In: McCann T (ed) The geology of central Europe, vol 2., Mesozoic and CenozoicGeological Society of London, London, pp 999–1030

    Google Scholar 

  • Schössler KS, Schwarzlose J (1959) Geophysikalische Wärmeflussmessungen. Freiberger Forsch-H. C75, Leipzig

  • Schwab G (1985) Paläomobilität der Norddeutsch-Polnischen Senke. Akademie der Wissenschaften der DDR, Dissertation B, Berlin

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Yousafzai A, Eckstein Y, Dahl PS (2010) Hydrochemical signatures of deep groundwater circulation in a part of the Himalayan foreland basin. Environ Earth Sci 59:1079–1098

    Article  Google Scholar 

Download references

Acknowledgments

We thank our colleagues from the geological surveys of Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg for providing the main data to construct the refined 3D structural model of the basin fill and for fruitful discussions. Landesamt für Geologie und Bergwesen Sachsen-Anhalt and Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern kindly provided additional well data to improve the database at the border of the structural model. The project received financial support from the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. This work is part of GeoEn and has partly been funded by the German Federal Ministry of Education and Research in the programme ‘‘Spitzenforschung in den neuen Ländern’’ (BMBFGrant03G0671A/B/C). The authors wish to thank the anonymous reviewers for the very thorough and most helpful review. We are grateful for valuable comments from the editorial team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Noack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noack, V., Scheck-Wenderoth, M. & Cacace, M. Sensitivity of 3D thermal models to the choice of boundary conditions and thermal properties: a case study for the area of Brandenburg (NE German Basin). Environ Earth Sci 67, 1695–1711 (2012). https://doi.org/10.1007/s12665-012-1614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1614-2

Keywords

Navigation