Skip to main content
Log in

Transport properties of low-sanidine single-crystals, glasses and melts at high temperature

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Thermal diffusivity (D) was measured using laser-flash analysis from oriented single-crystal low-sanidine (K0.92Na0.08Al0.99Fe3+ 0.005Si2.95O8), and three glasses near KAlSi3O8. Viscosity measurements of the three supercooled liquids, in the range 106.8 to 1012.3 Pa s, confirm near-Arrhenian behavior, varying subtly with composition. For crystal and glass, D decreases with T, approaching a constant near 1,000 K: D sat ∼ 0.65 ± 0.3 mm2 s−1 for bulk crystal and ∼0.53 ± 0.03 mm2 s−1 for the glass. A rapid decrease near 1,400 K is consistent with crossing the glass transition. Melt behavior is approximated by D = 0.475 ± 0.01 mm2 s−1. Thermal conductivity (k lat) of glass, calculated using previous heat capacity (C P) and new density data, increases with T because C P strongly increases with T. For melt, k lat reaches a plateau near 1.45 W m−1 K−1, and is always below k lat of the crystal. Melting of potassium feldspars impedes heat transport, providing positive thermal feedback that may promote further melting in continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackermann S, Hänni H, Kunz M, Armbruster T, Schefer J (2004) Cation distribution in a Fe-bearing K-feldspar from Itrongay, Madagascar: a combined neutron- and X-ray single-crystal diffraction study. Schweiz Mineral Petrograph Mitt 84:345–354

    Google Scholar 

  • Anderson OL, Isaak DG (1995) Elastic constants of mantle minerals at high temperature. In: Ahrens TJ (ed) Handbook of physical constants. American Geophysical Union, Washington DC, pp 69–96

    Google Scholar 

  • Bagdassarov N, Dingwell D (1994) Thermal properties of vesicular rhyolite. J Volcan Geotherm Res 60:179–191

    Article  Google Scholar 

  • Blumm J, Lemarchand S (2002) Influence of test conditions on the accuracy of laser flash measurements. High Temp High Pres 34:523–528

    Article  Google Scholar 

  • Blumm J, Opfermann J (2002) Improvement of the mathematical modeling of flash measurements. High Temp High Pres 34:515–521

    Article  Google Scholar 

  • Branlund JM, Hofmeister AM (2007) Thermal diffusivity of quartz to 1000°C: effects of impurities and the α-β phase transition. Phys Chem Miner 34:581–595

    Article  Google Scholar 

  • Cahill D, Watson SK, Pohl RO (1992) Lower limit of thermal conductivity of disordered solids. Phys Rev B 46:6131–6140

    Article  Google Scholar 

  • Degiovanni A, Andre S, Maillet D (1994) Phonic conductivity measurement of a semi-transparent material. In: Tong TW (ed) Thermal conductivity, vol 22. Technomic, Lancaster, pp 623–633

    Google Scholar 

  • Fried E (1969) Thermal conduction contribution to heat transfer at contacts. In: Tye RP (ed) Thermal conductivity, vol 2. Academic, London, pp 253–275

    Google Scholar 

  • Getson JM, Whittington AG (2007) Liquid and magma viscosity in the Anorthite–Forsterite–Diopside–Quartz system, and implications for the viscosity–temperature paths of cooling magmas. J Geophys Res B 112:10203. doi:10.1029/2006JB004812

    Article  Google Scholar 

  • Höfer M, Schilling FR (2002) Heat transfer in quartz, orthoclase, and sanidine at elevated temperature. Phys Chem Miner 29:571–584

    Article  Google Scholar 

  • Hofmeister AM (2006) Thermal diffusivity of garnets at high temperature. Phys Chem Miner 33:45–62

    Article  Google Scholar 

  • Hofmeister AM (2007a) Dependence of thermal transport properties on pressure. Proc Natl Acad Sci 104:9192–9197. doi:10.1073/pnas.0610734104

    Article  Google Scholar 

  • Hofmeister AM (2007b) Thermal diffusivity of aluminous spinels and magnetite at elevated temperature with implications for heat transport in Earth’s transition zone. Am Mineral (in press)

  • Hofmeister AM, Pertermann M (in review) Thermal diffusivity of clinopyroxenes at elevated temperature. Eur J Mineral

  • Hofmeister AM, Yuen DA (2007) The threshold dependencies of thermal conductivity and implications on mantle dynamics. J Geodyn 44:186–199

    Article  Google Scholar 

  • Hofmeister AM, Pertermann M, Branlund J, Whittington AG (2006) Geophysical implications of reduction in thermal conductivity due to hydration. Geophys Res Lett 33. doi:10.1029/2006GL026036

  • Hofmeister AM, Pertermann M, Branlund JM (2007) Thermal conductivity of the Earth. In: Schubert G (ed) Treatise in geophysics, vol 2. Mineral Physics (edited by G.D. Price) (Elsevier), Chap 18 (in press)

  • Hovis GL, Brennan S, Keohane M, Crelling J (1999) High-temperature X-ray investigation of sanidine-analbite crystalline solutions: thermal expansion, phase transitions, and volumes of mixing. Can Mineral 37:701–709

    Google Scholar 

  • Jewell JM, Shaw CM, Shelby JE (1993) Effects of water contenton aluminosilicate glasses and the relation to strong/gragile liquid theory. J Noncryst Solids 152:32–41

    Article  Google Scholar 

  • Lange RA (2007) The density and compressibility of KAlSi3O8 liquid to 6.5 GPa. Am Mineral 92:114–123

    Article  Google Scholar 

  • Lee HL, Hasselman DPH (1985) Comparison of data for thermal diffusivity obtained by laser-flash method using thermocouple and photodector. J Am Ceram Soc 68:C12–C13

    Google Scholar 

  • Lee DW, Kingery WD (1960) Radiation energy transfer and thermal conductivity of ceramic oxides. J Am Ceram Soc 43:594–607

    Article  Google Scholar 

  • Mehling H, Hautzinger G, Nilsson O, Fricke J, Hofmann R, Hahn O (1998) Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new mathematical model. Int J Thermophys 19:941–949

    Article  Google Scholar 

  • Mitra SS (1969) Infrared and Raman spectra due to lattice vibrations. In: Nudelman S, Mitra SS (eds) Optical properties of solids. Plenum, New York, p 333–452

    Google Scholar 

  • Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Clarendon, Oxford, 329 pp

    Google Scholar 

  • Nyfeler D, Armbruster T, Villa IM (1998) Si, Al, Fe order–disorder in Fe-bearing K-feldspar from Madagascar and its implications to Ar diffusion. Schweiz Mineral Petrograph Mitt 78:11–20

    Google Scholar 

  • Okamura S, Nakamura M, Nakashima S (2003) Determination of molar absorptivitiy of IR fundamental OH-stretching vibration in rhyolitic glasses. Am Mineral 88:1657–1662

    Google Scholar 

  • Osako M, Ito E, Yoneda A (2004) Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure. Phys Earth Planet Inter 143, 144:311–320

    Article  Google Scholar 

  • Pertermann M, Hofmeister AM (2006) Thermal diffusivity of olivine-group minerals. Am Mineral 91:1747–1760

    Article  Google Scholar 

  • Richet P (1987) Heat capacity of silicate glasses. Chem Geol 62:111–124

    Article  Google Scholar 

  • Richet P, Bottinga Y (1984) Glass transition and thermodynamic properties of SiO2, NaAlSinO2n+2 and KAlSi3O8. Geochim Cosmochim Acta 48:453–470

    Article  Google Scholar 

  • Romano C, Hess KU, Mincione V, Poe B, Dingwell DB (2001) The viscosities of hydrous XalSi3O8 (X = Li, Na, K, Ca0.5, Mg0.5) melts. Chem Geol 174:115–132

    Article  Google Scholar 

  • Sass JH (1965) The thermal conductivity of fifteen feldspar specimens. J Geophys Res 70:4064–4065

    Article  Google Scholar 

  • Snyder D, Gier E, Carmichael I (1994) Experimental determination of the thermal conductivity of molten CaMgSi2O6 and the transport of heat through magmas. J Geophys Res 99:15503–15516

    Article  Google Scholar 

  • Stebbins JF, Carmichael ISE, Weill DE (1983) The high-temperature liquid and glass heat contents and heats of fusion of diopside, albite, sanidine, and nepheline. Am Mineral 68:717–730

    Google Scholar 

  • Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib Mineral Petrol 86:131–148

    Article  Google Scholar 

  • Stein D, Spera F (1994) Experimental rheometry of melts in system NaAlSiO4–SiO2: implications for melt structure and dynamics. Am Mineral 78:710–723

    Google Scholar 

  • Stein DJ, Spera FJ (1998) New high-temeprature rotational rheometer for silicate melts, magmatic suspensions, and emulsions. Rev Sci Inst 69:3398–3402

    Article  Google Scholar 

  • Stein DJ, Spera FJ (2001) Shear viscosity of rhyolite-vapor emulsions at magmatic temperatures by concentric cylinder rheometry. J Volcanol Geotherm Res 113:243–258

    Article  Google Scholar 

  • Toplis MJ, Dingwell DB, Hess KU, Lenci T (1997) Viscosity, fragility, and configurational entropy of melts along the join SiO2–NaAlSiO4. Am Mineral 82:979–990

    Google Scholar 

  • Urbain G, Bottinga Y, Richet P (1982) Viscosity of liquid silica, silicates and aluminosilicates. Geochim Cosmochim Acta 46:1061–1072

    Article  Google Scholar 

  • Whittington A, Richet P, Behrens H, Holtz F, Scaillet B (2004) Experimental temperature–X(H2O)–viscosity relationship for leucogranites, and comparison with synthetic silicic liquids. Trans R Soc Edinburgh Earth Sci 95:59–72

    Article  Google Scholar 

  • Zulumyan NO, Mirgorodskii AP, Pavinich VF, Lazarev AN (1976) Study of calculation of the vibrational spectrum of a crystal with complex polyatomic anion. Diopside CaMgSi2O6. Opt Spectrosc 41:622–627

    Google Scholar 

Download references

Acknowledgments

MP and AMH were supported by National Science Foundation (NSF) grant EAR-0207198. AGW was supported by NSF grant EAR-0440119. FJS acknowledges support from the NSF grants EAR-0609680 and EAR-0440010 as well as support from the US Department of Energy DE-FG03-91ER-14211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Hofmeister.

Additional information

Communicated by: T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pertermann, M., Whittington, A.G., Hofmeister, A.M. et al. Transport properties of low-sanidine single-crystals, glasses and melts at high temperature. Contrib Mineral Petrol 155, 689–702 (2008). https://doi.org/10.1007/s00410-007-0265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0265-x

Keywords

Navigation