Skip to main content
Log in

Genetic dissection of spike-related traits in wheat (Triticum aestivum L.) under aluminum stress

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Wheat (Triticum aestivum L.) is one of the most important cereals and is a major staple food in developing countries. However, in acid soils, its productivity is limited by aluminum (Al) toxicity. Wheat yield can be enhanced by modifying the spike-related traits. In order to identify quantitative trait loci (QTL) associated with Al tolerance, 167 recombinant inbred lines (RILs) derived from a cross between SeriM82 and Babax were evaluated under normal and Al stress conditions for two consecutive crop seasons. Using Composite Interval Mapping (CIM) method, 64 QTLs including 13 putative and 51 suggestive QTLs were detected for all traits. These QTLs explained 3.58–14.39% of the total variations during both the crop seasons. Using mixed model-based composite interval mapping (MCIM) method, 58 QTLs were determined to have significant additive effects, of which 21 also showed epistatic effects. Twenty-three additive QTLs had significant interaction with environment, and 35 QTLs with no additive × environment interactions (AEI) were suggested as stable. Seven pairs of 12 pairs epistatic QTLs exhibited significant interactions with environment. 16.00% of additive QTL × environment interactions (QEIs) and 71.43% of epistatic QEIs were related to Al stress with significant genetic effects increasing phenotypic values. In both method, nine QTL clusters on six LGs 2A-d, 2D, 3B, 4B, 6A-a, and 7D-a, indicated pleiotropy or gene linkage in the inheritance of spike-related traits. These results will be of great value for marker-assisted selection and QTL pyramiding in wheat breeding programs for Al tolerance, following validation in different environments and genetic backgrounds and will accelerate the understanding of the genetic relationships among spike-related traits at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bhalerao SA, Bhalerao DV (2013) Aluminium toxicity in plants—a review. J Appl Chem 2(3):447–474

    CAS  Google Scholar 

  • Bhusal N, Sarial AK, Sharma P, Sareen S (2017) Mapping QTLs for grain yield components in wheat under heat stress. PLoS ONE 12(12):e0189594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bocianowski J (2013) Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genet Mol Biol 36(1):93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojorquez-Quintal E, Escalante-Magana C, Echevarria-Machado I, Martinez-Estevez M (2017) Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci 8:1767

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabral AL, Jordan MC, Larson G, Somers DJ, Humphreys DG, McCartney CA (2018) Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’. PLoS ONE 13(1):e0190681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai S, Bai GH, Zhang D (2008) Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet 117:49–56

    Article  CAS  PubMed  Google Scholar 

  • Chang JZ, Zhang JA, Mao XG, Li A, Jia JZ, Jing RL (2013) Polymorphism of TaSAP1-A1 and its association with agronomic traits in wheat. Planta 237:1495–1508

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Wu XY, Wu K, Zhang JP, Liu WH, Yang XM, Li XQ, Lu YQ, Li LH (2017) Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments. J Integr Agric 16(11):2386–2401

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cui F, Ding A, Li J, Zhao C, Wang L, Wang X et al (2012) QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica 186:177–192

    Article  Google Scholar 

  • Cui F, Fan X, Chen M, Zhang N, Zhao C, Zhang W et al (2016) QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theor Appl Genet 129:469–484

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Bai G, Zhang D, Hong D (2013) Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Euphytica 192:171–179

    Article  CAS  Google Scholar 

  • Deng Z, Cui Y, Han Q, Fang W, Li J, Tian J (2017) Discovery of consistent QTLs of wheat spike-related traits under nitrogen treatment at different development stages. Front Plant Sci 8:2120

    Article  PubMed  PubMed Central  Google Scholar 

  • Echeverry-Solarte M, Kumar A, Kianian S et al (2015) Genome-wide mapping of spike-related and agronomic traits in a common wheat population derived from a supernumerary spikelet parent and an elite parent. Plant Genome 8(2):1–20. https://doi.org/10.3835/plantgenome2014.12.0089

    Article  CAS  Google Scholar 

  • El-Feki WM, Byrne PF, Reid SD, Haley SD (2018) Mapping quantitative trait loci for agronomic traits in winter wheat under different soil moisture levels. Agronomy 8(8):133

    Article  CAS  Google Scholar 

  • Faris JD, Zhang Z, Garvin DF, Xu SS (2014) Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Mol Genet Genom 289:641–651

    Article  CAS  Google Scholar 

  • Feng N, Song GY, Guan JT, Chen K, Jia ML, Huang DH et al (2017) Transcriptome profiling of wheat inflorescence development from spikelet initiation to floral patterning identified stage-specific regulatory genes. Plant Physiol 174:1779–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froese PS, Carter AH (2016) Single nucleotide polymorphisms in the wheat genome associated with tolerance of acidic soils and aluminum toxicity. Crop Sci 56(4):1662–1677

    Article  CAS  Google Scholar 

  • Gao FM, Wen WE, Liu JD, Rasheed A, Yin GH, Xia XC et al (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci 6:1099

    PubMed  PubMed Central  Google Scholar 

  • Garcia-Oliveira AL, Benito C, Prieto P, de Andrade Menezes R, Rodrigues-Pousada C, Guedes-Pinto H (2013) Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biol 13:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Oliveira AL, Poschenrieder C, Barcelo J, Martins-Lopes P (2015) Breeding for Al tolerance by unravelling genetic diversity in bread wheat. Aluminum Stress Adaptation in Plants. Springer, New York, pp 125–153

    Chapter  Google Scholar 

  • Garcia-Oliveira AL, Benito C, Guedes-Pinto H, Martins-Lopes P (2018) Molecular cloning of TaMATE2 homoeologues potentially related to aluminium tolerance in bread wheat (Triticum aestivum L.). Plant Biol 20(5):817–824

    Article  CAS  PubMed  Google Scholar 

  • Golabadi M, Arzani A, Mirmohammadi Maibody SAM, Tabatabaei BES, Mohammadi SA (2011) Identification of micro satellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica 177(2):207–221

    Article  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Jamshed M, Jia F, Gong J, Palanga KK et al (2016) Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genom 17:197

    Article  CAS  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108(2):261–273

    Article  CAS  PubMed  Google Scholar 

  • Johnson EB, Nalam VJ, Zemetra RS, Riera-Lizarazu O (2008) Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica 163:193–201

    Article  Google Scholar 

  • Kelly JK, Mojica JP (2011) Interactions among flower-size QTL of Mimulus guttatus are abundant but highly variable in nature. Genetics 189(4):1461–1471

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosambi D (1943) The estimation of map distances from recombination values. Ann Eugen 12(1):172–175

    Article  Google Scholar 

  • Kumar A, Mantovani EE, Seetan R, Soltani A et al (2016) Dissection of genetic factors underlying wheat kernel shape and size in an Elite × Nonadapted cross using hight density SNP linkage map. Plant Genome 9(1):1–22. https://doi.org/10.3835/plantgenome2015.09.0081

    Article  CAS  Google Scholar 

  • Landjeva S, Lohwasser U, Borner A (2010) Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth. Euphytica 171(1):129–143

    Article  Google Scholar 

  • Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Luo X, Shaff J, Liang C, Jia X, Li Z et al (2012) A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminum resistance and improved carbon-use efficiency for aluminum resistance. Plant J 71(2):327–337

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Deng ZY, Li QF, Zhang Y, Sun CL, Tian JC et al (2016) Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin 42:820–831

    Article  CAS  Google Scholar 

  • Liu K, Sun XX, Ning TY, Duan XX, Wang QL, Liu TT et al (2018) Genetic dissection of wheat panicle traits using linkage analysis and a genome-wide association study. Theor Appl Genet 131:1073–1090

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, Reynolds MP, McIntyre CL, Mathews KL, Kamali MRJ, Mossad M et al (2013) QTL for yield and associated traits in the SeriM82/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor Appl Genet 126(4):971–984

    Article  PubMed  Google Scholar 

  • Lorenz K, Cohen BA (2012) Small- and large-effect quantitative trait locus interactions underlie variation in yeast sporulation efficiency. Genetics 192(3):1123–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot 66(8):2199–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma HX, Bai GH, Lu WZ (2006) Quantitative trait loci for aluminum resistance in wheat cultivar Chinese Spring. Plant Soil 283(1–2):239–249

    Article  CAS  Google Scholar 

  • Maccaferri M, El-Feki W, Nazemi G et al (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67(4):1161–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoudi B, Mardi M, Hervan EM, Bihamta MR, Naghavi MR, Nakhoda B, Amini A (2015) QTL mapping of salt tolerance traits with different effects at the seedling stage of bread wheat. Plant Mol Biol Rep 33(6):1790–1803

    Article  CAS  Google Scholar 

  • Maulana F, Ayalew H, Anderson JD, Kumssa TT, Huang W, Ma XF (2018) Genome-wide association mapping of seedling heat tolerance in winter wheat. Front Plant Sci 9:1272

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Morris CF, Rogers WJ (2003) Catalogue of gene symbols for wheat (Online). http://wheat.pw.usda.gov/ggpages/wgc/2003/GeneSymbol.html. Accessed 6 June 2012

  • McIntyre CL, Mathews KL, Rattey A, Drenth J, Ghaderi M, Reynolds M et al (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120(3):527–541

    Article  CAS  PubMed  Google Scholar 

  • Mengistu N, Baenziger PS, Eskridge KM, Dweikat I, Wegulo SN, Gill KS, Mujeeb-Kazi A (2012) Validation of QTL for grain yield related traits on wheat chromosome 3A using recombinant inbred chromosome lines. Crop Sci 52:1622–1632

    Article  Google Scholar 

  • Miao L, Mao X, Wang J, Liu Z, Zhang B, Li W et al (2017) Elite haplotypes of a protein kinase gene TaSnRK2.3 associated with important agronomic traits in common wheat. Front Plant Sci 8:368

    PubMed  PubMed Central  Google Scholar 

  • Navakode S, Weidner A, Lohwasser U, Roder MS, Borner A (2009) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290

    Article  CAS  Google Scholar 

  • Navakode S, Neumann K, Kobiljski B, Lohwasser U, Borner A (2014) Genome wide association mapping to identify aluminium tolerance loci in bread wheat. Euphytica 198:401–411

    Article  CAS  Google Scholar 

  • Olivares-Villegas JJ, Reynolds MP, McDonald GK (2007) Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct Plant Biol 34(3):189–203

    Article  PubMed  Google Scholar 

  • Payne R, Welham S, Harding S (2012) A guide to REML in GenStat, 15th edn. VSN International, Hemel Hempstead, UK. www.vsni.co.uk/software/genstat. Accessed 2015

  • Pereira JF (2018) Initial root length in wheat is highly correlated with acid soil tolerance in the field. Sci Agric 75(1):79–83

    Article  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121(6):1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman H, Stodart B, Ryan PR, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A (2010) Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53(11):957–966

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Rattey A, Shorter R, Chapman S, Dreccer F, van Herwaarden A (2009) Variation for and relationships among biomass and grain yield component traits conferring improved yield and grain weight in an elite wheat population grown in variable yield environments. Crop Pasture Sci 60(8):717–729

    Article  Google Scholar 

  • Ryan PR, Dong D, Teuber F, Wendler N, Muhling KH, Liu J, Xu M, Salvador Moreno N, You J, Maurer H-P, Horst WJ, Delhaize E (2018) Assessing how the aluminum-resistance traits in wheat and rye transfer to hexaploid and octoploid triticale. Front Plant Sci 9:1334

    Article  PubMed  PubMed Central  Google Scholar 

  • SAS Institute Inc (2002) SAS/STAT user’s guide SAS Inst Cary, NC

  • Shi Sh, Azam FI, Li H, Chang X, Li B (2017) Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica 213:246

    Article  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang ZC, Tai YS, Gill BS et al (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Singh NP, Chauhan SK, Singh P (2011) Developing aluminium-tolerant crop plants using biotechnological tools. Curr Sci 100(12):1807–1814

    CAS  Google Scholar 

  • Smith A, Cullis B, Thompson R (2001) Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57(4):1138–1147

    Article  CAS  PubMed  Google Scholar 

  • Sohrabi Chah Hassan F, Solouki M, Fakheri BA, Mahdi Nezhad N, Masoudi B (2018) Mapping QTLs for physiological and biochemical traits related to grain yield under control and terminal heat stress conditions in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24(6):1231–1243

    Article  CAS  Google Scholar 

  • Sourdille P, Tixier MH, Charmet G, Gay G, Bernard S, Bernard M (2000) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255

    Article  CAS  Google Scholar 

  • Su Q, Zhang X, Zhang W, Zhang N et al (2018) QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci 9:1484

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL (2016) Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 60(1):26–45

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Niu Y, Wang Y, Chen T, Naveed SA, Zhang J et al (2018) Genome-wide association mapping of aluminum toxicity tolerance and fine mapping of a candidate gene for Nrat1 in rice. PLoS ONE 13(6):e0198589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tovkach A, Ryan PR, Richardson AE, Lewis DC, Rathjen TM, Ramesh S, Tyerman SD, Delhaize E (2013) Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiol 161(2):880–892

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 1 Aug 2012

  • Wang S, Zhang X, Chen F, Cui D (2015) A single-nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat. Front Plant Sci 6:1166

    PubMed  PubMed Central  Google Scholar 

  • Wu QH, Chen YX, Zhou SH, Fu L, Chen JJ, Xiao Y et al (2015) High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817 × Beinong6. PLoS ONE 10:e0118144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie Q, Fernando KMC, Mayes S, Sparkes DL (2017) Identifying seedling root architectural traits associated with yield and yield components in wheat. Ann Bot 119(7):1115–1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTLs for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant breed 132(3):276–283

    Article  CAS  Google Scholar 

  • Xu Y, Wang R, Tong Y, Zhao H, Xie Q, Liu D et al (2014) Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet 127:59–72

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTL Network: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  CAS  Google Scholar 

  • Yang ZB, Rao IM, Horst WJ (2012) Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil 1–2:3–25

    Google Scholar 

  • Yang D, Liu Y, Cheng H, Chang L, Chen J, Chai S, Li M (2016) Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet 17:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai H, Feng Z, Li J, Liu X, Xiao S, Ni Z, Sun Q (2016) QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci 7:1617

    PubMed  PubMed Central  Google Scholar 

  • Zhang K, Wang J, Zhang L, Rong C, Zhao F, Peng T et al (2013) Association analysis of genomic loci important for grain weight control in elite common wheat varieties cultivated with variable water and fertiliser supply. PLoS ONE 8:e57853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Zhong K, Tong H, Shahid MQ, Li J (2016) Association mapping for aluminum tolerance in a core collection of Rice Landraces. Front Plant Sci 7:1415

    PubMed  PubMed Central  Google Scholar 

  • Zhang ZG, Lv GD, Li B, Wang JJ, Zhao Y, Kong FM et al (2017) Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLoS ONE 12:e0174425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Gizaw SA, Bossolini E, Hegarty JM, Carter AH, Chao S, Akhunov E, Dubcovsky J (2018) Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theor Appl Genet 131:1741–1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Xu S (2012) Genotype by environment interaction of quantitative traits: a case study in barley. G3: Genes, Genomes, Genetics 2(7):779–788

    Article  Google Scholar 

  • Zhou Y, Conway B, Miller D et al (2017) Quantitative trait loci mapping for spike characteristics in hexaploid wheat. Plant Genome 10(2):1–15. https://doi.org/10.3835/plantgenome2016.10.0101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Lynne McIntyre for providing the marker data of SeriM82/Babax population. The Darab Agriculture and Natural Resources Research and Education Center for providing the seeds of the SB population and the support in field trials and also Faculty of Agriculture and Natural Resources of Darab to provide laboratory facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

B.A.F, S.T, N.M.N and A.M designed the research and edited the manuscript. Thanks to S.T for the help in statistical analysis. S.F. performed the experiments, analyzed the data, and wrote the primary draft of the manuscript.

Corresponding author

Correspondence to Sara Farokhzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farokhzadeh, S., Fakheri, B.A., Mahdi Nezhad, N. et al. Genetic dissection of spike-related traits in wheat (Triticum aestivum L.) under aluminum stress. Genet Resour Crop Evol 67, 1221–1243 (2020). https://doi.org/10.1007/s10722-020-00907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00907-6

Keywords

Navigation