Skip to main content
Log in

Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Aluminum (Al) toxicity is a major constraint for wheat production in acid soils worldwide. Chinese landrace FSW demonstrates a high level of Al resistance. A population of recombinant inbred lines (RILs) was developed from a cross between FSW and an Al-sensitive Chinese line, ND35, using single seed descent, to map quantitative trait loci (QTLs) for Al resistance. Wheat reaction to Al stress was measured by net root growth (NRG) in a nutrient solution culture containing Al3+ and hematoxylin staining score (HSS) of root after Al stress. After 1,437 simple sequence repeats (SSRs) were screened using bulk segregant analysis, three QTLs were identified to control Al resistance in FSW. One major QTL (Qalt.pser-4DL) was mapped on chromosome 4DL that co-segregated with Xups4, a marker for the promoter of the Al-activated malate transporter (ALMT1) gene. The other two QTLs (Qalt.pser-3BL, Qalt.pser-2A) were located on chromosomes 3BL and 2A, respectively. Together, the three QTLs accounted for up to 81.9% of the phenotypic variation for HSS and 78.3% of the variation for NRG. The physical positions of flanking markers for Qalt.pser-4DL and Qalt.pser-3BL were determined by analyzing these markers in corresponding nulli-tetrasomic, ditelosomic, and 3BL deletion lines of Chinese Spring. Qalt.pser-3BL is a novel QTL with a major effect on Al resistance discovered in this study. The two major QTLs on 4DL and 3BL demonstrated an additive effect. The SSR markers closely linked to the QTLs have potential to be used for marker-assisted selection (MAS) to improve Al resistance of wheat cultivars in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alva AK, Asher CJ, Edwards DG (1986) The role of calcium in alleviating aluminum toxicity. Aust J Agric Res 37:375–382

    Article  CAS  Google Scholar 

  • Anas YT (2000) Screening of Al-tolerant sorghum by hematoxylin staining and growth response. Plant Prod Sci 3:246–253

    Article  Google Scholar 

  • Basu U, McDonald JL, Archamhault DJ, Good AG, Briggs KG, Aung T, Taylor GJ (1997) Genetic and physiological analysis of doubled-haploid, aluminum-resistant lines of wheat provide evidence for the involvement of a 23 kD, root exudated polypeptide in mediating resistance. Plant Soil 196:283–288

    Article  CAS  Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodbury, pp 121–126

    Google Scholar 

  • Berzonsky WA (1992) The genomic inheritance of aluminum tolerance in ‘Atlas 66’ wheat. Genome 35:689–693

    Google Scholar 

  • Cancado GMA, Loguercio LL, Martins PR, Parentoni SN, Paiva E, Borém A, Lopes MA (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theor Appl Genet 99:747–754

    Article  CAS  Google Scholar 

  • Carver BF, Whitmore WE, Smith EL, Bona L (1993) Registration of four aluminum-tolerant winter wheat germplasms and two susceptible near-isolines. Crop Sci 33:1113–1114

    Google Scholar 

  • de Sousa CNA (1998) Classification of Brazilian wheat cultivars for aluminum toxicity in acid soils. Plant Breed 117:217–221

    Article  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.): uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    PubMed  CAS  Google Scholar 

  • Doerge R, Churchill G (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Garvin DF, Carver BF (2003) Role of genotypes tolerant of acidity and aluminum toxicity. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 387–406

    Google Scholar 

  • Guo P-G, Bai G-H, Carver BF, Li R-H, Bernardo A, Baum M (2007) Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics 277:1–12

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of transferability of microsatellite derived from Triticum taushchii to hexaploid wheat and diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV (2003) Identification and characterization of aluminum-tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol 132:936–948

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisims of aluminium toxicity and resistance in plants. Annu Rev Plant Physiol Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Luo MC, Dvorak J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91:31–35

    Article  CAS  Google Scholar 

  • Ma H-X, Bai G-H, Carver BF, Zhou L-L (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57

    Article  PubMed  CAS  Google Scholar 

  • Ma H-X, Bai G-H, Lu W-Z (2006) Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Plant Soil 283:239–249

    Article  CAS  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    Article  PubMed  CAS  Google Scholar 

  • Parker DR, Pedler JF (1998) Probing the “malate hypothesis” of differential aluminum tolerance in wheat by using other rhizotoxic ions as proxies for Al. Planta 205:389–396

    Article  CAS  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum resistance mechanisms in wheat: the roles of root apical phosphate and malate exudation. Plant Physiol 112:591–597

    PubMed  CAS  Google Scholar 

  • Pellet DM, Papernik LA, Jones DL, Darrah PR, Grunes DL, Kochian LV (1997) Involvement of multiple aluminum exclusion mechanisms in aluminum tolerance in wheat. Plant Soil 192:63–68

    Article  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of breed wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    PubMed  CAS  Google Scholar 

  • Raman H, Raman R, Wood R, Martin P (2006) Repetitive indel markers within the ALMT1 gene controlling aluminum tolerance in wheat (Triticum aestivum L). Mol Breed 18:171–183

    Article  CAS  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Google Scholar 

  • Roder MS, Korzum V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman K, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima K, Toyoda A, Matsumoto H, Yamamoto Y (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47(10):1343–1354

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivium L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song Q-J, Shi J-R, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot/Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    Google Scholar 

  • Taylor GJ, Foy CD (1985) Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat). I. Differential pH induced by winter cultivars in nutrient solutions. Am J Bot 72:695–701

    Article  CAS  Google Scholar 

  • van Ooijen JW (2004) MapQTL® 5.0. Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0. Software for the calculation of genetic linkage maps. Plant Res Int, Wageningen

    Google Scholar 

  • Zhou L-L, Bai G-H, Ma H-X, Carver BF (2007a) Quantitative trait loci for aluminum resistance in wheat. Mol Breed 19:153–161

    Article  CAS  Google Scholar 

  • Zhou L-L, Bai G-H, Carver BF (2007b) Identification of new sources of aluminum resistance in wheat. Plant Soil 297:105–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is partly funded by the National Research Initiative of USDA’s Cooperative State Research, Education and Extension Service, CAP grant number 2006-55606-16629. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. This is contribution No. 08-172-J from the Kansas Agricultural Experiment Station, Manhattan, Kansas, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Hua Bai.

Additional information

Communicated by J.-L. Jannink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, S., Bai, GH. & Zhang, D. Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet 117, 49–56 (2008). https://doi.org/10.1007/s00122-008-0751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0751-1

Keywords

Navigation