Skip to main content
Log in

Genome wide association mapping to identify aluminium tolerance loci in bread wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Aluminium (Al) toxicity in acid soils continues to be a major concern for crop production, especially for wheat which is a moderately tolerant cereal crop species. So far, Al tolerance was known to be controlled by few genetic loci detected clearly by classical mapping studies. Here, we report the outcome of a genome wide association mapping approach in bread wheat (Triticum aestivum L.) using 525 Diversity Array Technology markers genotyped in a core collection of 96 winter wheat accessions. Marker-trait associations (MTAs) were detected using both general linear model (GLM) and mixed linear model (MLM). Five significant MTAs were identified as shared by models on chromosomes 1A, 1D, 3B and 6A. Highly significant MTAs were identified by MLM on chromosomes 1D and 3B which could be new candidate loci for future studies. Some of our results are in line with prior reports, but some appear to be novel. Potential candidate genes have been searched in respective chromosomal bins for highly significant MTAs detected by MLM. The loci identified in our study have the potential to improve Al tolerance in wheat and hence need to be verified and utilized for breeding tolerant cultivars worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aniol A (1990) Genetics of tolerance to aluminum in wheat (Triticum aestivum L. Thell). Plant Soil 123:223–227

    Article  CAS  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol 26:701–705

    Google Scholar 

  • Berzonsky WA (1992) The genomic inheritance of aluminum tolerance in Atlas-66 wheat. Genome 35:689–693

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Bai GH, Zhang D (2008) Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet 117(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) 2. Aluminum-stimulated excretion of malic-acid from root apices. Plant Physiol 103:695–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7(8):e1002221. doi:10.1371/journal.pgen.1002221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54(1):357–374

    Article  CAS  PubMed  Google Scholar 

  • Garvin DF, Carver BF (2003) Role of genotypes tolerant of acidity and aluminium toxicity. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker Inc, New York, pp 387–406

    Google Scholar 

  • Hede AR, Skovmand B, Ribaut JM, Gonzalez-de-Leon D, Stolen O (2002) Evaluation of aluminium tolerance in a spring rye collection by hydroponic screening. Plant Breed 121:241–248

    Article  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Hu SW, Bai GH, Carver BF, Zhang DD (2008) Diverse origins of aluminum-resistance sources in wheat. Theor Appl Genet 118(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104(23):9900–9905

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckermann D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed Central  PubMed  Google Scholar 

  • Kobiljski B, Quarrie SA, Dencˇic´ S, Kirby J, Ivege˘s M (2002) Genetic diversity of the Novi Sad wheat collection revealed by microsatellites. Cell Mol Biol Lett 7:685–694

    CAS  PubMed  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Krill AM, Kirst M, Kochian LV, Buckler ES, Hoekenga OA (2010) Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE 5(4):e9958. doi:10.1371/journal.pone.0009958

    Article  PubMed Central  PubMed  Google Scholar 

  • Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance aluminum resistance of plant cells. Plant Physiol 142(3):1294–1303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu JP, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    Article  CAS  PubMed  Google Scholar 

  • Luo MC, Dvorak J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91:31–35

    Article  CAS  Google Scholar 

  • Ma HX, Bai GH, Carver BF, Zhou LL (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57

    Article  CAS  PubMed  Google Scholar 

  • Ma HX, Bai GH, Lu WZ (2006) Quantitative trait loci for aluminum resistance in wheat cultivar Chinese Spring. Plant Soil 283:239–249

    Article  CAS  Google Scholar 

  • Milla MAR, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892

    Article  CAS  PubMed  Google Scholar 

  • Navakode S, Weidner A, Lohwasser U, Roder MS, Börner A (2009) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Niedziela A, Bednarek PT, Cichy H, Budzianowski G, Kilian A, Aniol A (2012) Aluminum tolerance association mapping in triticale. BMC Genom 13:67

    Article  CAS  Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV (2001) Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212:829–834

    Article  CAS  PubMed  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quarrie SA, Dodig D, Pekic¸ S, Kirby J, Kobiljski B (2003) Prospects for marker-assisted selection of improved drought responses in wheat. Bulg J Plant Physiol 29:83–95

    Google Scholar 

  • Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Ryan PR, Raman R, Stodart BJ, Zhang K, Martin P, Wood R, Sasaki T, Yamamoto Y, Mackay M, Hebb DM, Delhaize E (2008) Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theor Appl Genet 116(3):343–354

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Stodart BJ, Ryan PR, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A (2010) Genome wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53:957–966

    Article  CAS  PubMed  Google Scholar 

  • Rehman Arif MA, Nagel M, Neumann K, Kobiljski B, Lohwasser U, Börner A (2011) Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica 186:1–13

    Article  Google Scholar 

  • Rehman Arif MA, Neumann K, Nagel M, Kobiljski B, Lohwasser U, Börner A (2012) An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica. doi:10.1007/s10681-012-0705-1

    Google Scholar 

  • Richards KD, Snowden KC, Gardner RC (1994) Wali6 and Wali7. Genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol 105(4):1455–1456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149(1):340–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Snowden KC, Gardner RC (1993) Five genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol 103(3):855–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somers DJ, Briggs KG, Gustafson JP (1996) Aluminum stress and protein synthesis in near isogenic lines of Triticum aestivum differing in aluminum tolerance. Physiol Plant 97(4):694–700

    Article  CAS  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    Article  Google Scholar 

  • Von Uexkull HR, Mutert E (1995) Global extent, development and economic-impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed model for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhao LinNa, Zhao Qian, Ao GuangMing, Yu JingJuan (2009) The foxtail millet Si69 gene is a Wali7 (wheat aluminum-induced protein7) homologue and may function in aluminum tolerance. Chin Sci Bull 54:1697–1706

    Article  CAS  Google Scholar 

  • Zhou LL, Bai GH, Ma HX, Carver BF (2007) Quantitative trait loci for aluminum resistance in wheat. Mol Breed 19:153–161

    Article  CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Stefanie Thumm for her kind technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Navakode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navakode, S., Neumann, K., Kobiljski, B. et al. Genome wide association mapping to identify aluminium tolerance loci in bread wheat. Euphytica 198, 401–411 (2014). https://doi.org/10.1007/s10681-014-1114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1114-4

Keywords

Navigation